Relaxing the Additivity Constraints in Decentralized No-Regret **High-Dimensional Bayesian Optimization**

Anthony Bardou^{1,2}, Patrick Thiran¹, and Thomas Begin² ¹IC, EPFL, Lausanne, Switzerland — ²ENS Lyon, Université Lyon 1, CNRS, Lyon, France

Bayesian Optimization

High-Dimensional BO with Additive Structure

The usual algorithms optimizing the acquisition function are **prohibitive** in high-dimensional spaces. To reduce the complexity, one can assume an additive decomposition $f = \sum_{i=1}^{n} f^{(i)}$, with each factor $f^{(i)}$ being a \mathcal{GP} with kernel function $k^{(i)}$.

GP-UCB is optimized on each $f^{(i)}$ in parallel, leading to the optimization of $\varphi_t(\boldsymbol{x}) = \mu_t(\boldsymbol{x}) + \beta_t^{1/2} \sum_{i=1}^n \sigma_t^{(i)}(\boldsymbol{x})$. This also ensures no-regret performance. However:

- $\sum_{i=1}^n \sigma_t^{(i)}(\boldsymbol{x}) \ge \sqrt{\sum_{i=1}^n \left(\sigma_t^{(i)}(\boldsymbol{x})\right)^2} = \sigma_t(\boldsymbol{x})$, leading to over-exploration
- This strategy is less prohibitive if the additive decomposition is assumed to have a low Maximum Factor Size (MFS)

The Big Questions

- Can we address the decentralized GP-UCB over-exploration issue?
- Can we relax the low-MFS assumption in no-regret high-dimensional BO?

A New Acquisition Function

Through message-passing in the factor graph, a factor $f^{(i)}$ can access information from the set \mathcal{N}_i of factors that share at least one input dimension with it. We propose

$$\varphi_t(\boldsymbol{x}) = \sum_{i=1}^n \varphi_t^{(i)}(\boldsymbol{x}) = \sum_{i=1}^n \mu_t^{(i)}(\boldsymbol{x}) + \beta_t^{1/2}$$

Theorem $\sigma_t(\boldsymbol{x}) \leq \sum_{i=1}^n \sqrt{\sum_{k \in \mathcal{N}_i} \left(\sigma_t^{(k)}(\boldsymbol{x}) / \mathcal{N}_k\right)^2} \leq \sum_{i=1}^n \sigma_t^{(i)}(\boldsymbol{x})$ for any factor graph.

DuMBO

We propose **DuMBO**, an algorithm that optimizes the augmented Lagrangian of φ_t , that is $\mathcal{L}_\eta(\boldsymbol{x}^{(1)},\cdots,\boldsymbol{x}^{(n)},ar{\boldsymbol{x}},\boldsymbol{\lambda})$ where

$$\mathcal{L}_{\eta} = \sum_{i=1}^{n} \varphi_{t}^{(i)}(\boldsymbol{x}^{(i)}) - \boldsymbol{\lambda}^{(i)\top} (\boldsymbol{x}^{(i)} - \boldsymbol{x}^{(i)\top}) (\boldsymbol{x}^{(i)\top}) (\boldsymbol{x}^{(i$$

DuMBO uses ADMM to optimize \mathcal{L}_{η} in a **decentralized fashion** and scalably, even when the additive decomposition has a large MFS.

Theorem Under a mild assumption, φ_t is a restricted prox-regular function and \mathcal{L}_{η} satisfies the Kurdyka-Łojasiewicz condition.

Corollary ADMM can always find $x_{t+1} = \arg \max_{\boldsymbol{x} \in \mathcal{D}} \varphi_t(\boldsymbol{x})$ [1].

Asymptotic Guarantees

 $\operatorname{lom} arphi_t^{(\imath)}$ $) - \frac{\eta}{2} || \boldsymbol{x}^{(i)} - \bar{\boldsymbol{x}}_{\operatorname{dom} \varphi_t^{(i)}} ||_2^2.$

Theorem DuMBO has a **lower regret bound** than the regret bounds of some decentralized no-regret high-dimensional BO algorithms (e.g. [2]). **Corollary** DuMBO ensures **no-regret performance**.

Numerical Results

Excellent empirical performance on synthetic and real-world problems. When the decomposition is provided instead of being inferred, DuMBO achieves even better performance (see ADD-DuMBO).

- asymptotic guarantees
- guarantee and excellent empirical performance.

References

- USA, 2018.

Summary

• Exploiting the factor graph of the decomposition can prevent over-exploration • Some acquisition functions can be optimized by ADMM without weakening BO

• DuMBO is a high-dimensional BO algorithm that offers simultaneously a no-regret

[1] Yu Wang, Wotao Yin, and Jinshan Zeng. "Global Convergence of ADMM in Nonconvex Nonsmooth Optimization". In: J. Sci. Comput. 78.1 (Jan. 2019), pp. 29–63. DOI: 10.1007/s10915-018-0757-z. [2] Trong Nghia Hoang et al. "Decentralized High-Dimensional Bayesian Optimization with Factor Graphs". In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans, Louisiana,