Epidemic Learning: Boosting Decentralized Learning with Randomized Communication

Martijn de Vos, Sadegh Farhadkhani, Rachid Guerraoui, Anne-Marie Kermarrec, Rafael Pires, Rishi Sharma

Motivation

EPFL, Switzerland

Decentralized Learning

- 1. Peer-to-peer network of *n* nodes
- 2. Data stays where it is produced
- 3. Neighbors iteratively train and exchange models

DL at node *i*: Train \rightarrow Share \rightarrow Aggregate

Learning Topology

- 1. Topology affects the convergence speed
- 2. Convergence can be boosted through randomization
- 3. Randomization through peer-samplers [1]

DL with 96 nodes on CIFAR-10

Epidemic Learning (EL)

Nodes randomly sample neighbors in each round

- Balanced
- Global coordination

EL-Oracle (forming a s-regular graph)

EL-Local (forming a s-out graph)

- Local decision
- (Slightly) unbalanced

Convergence Guarantee

$$O(\frac{1}{\sqrt{nT}} + \frac{1}{\sqrt[3]{ST^2}} + \frac{1}{T})$$

- 1. Linear speedup
 - First term: preserved from D-PSGD^[2]
- 2. Transient iterations
 - Superior second term: $O(n^3/\varsigma^2)$
 - Number of rounds for the first term to dominate
- 3. Assumptions
 - Smooth non-convex loss with bounded stochastic noise and data heterogeneity

Evaluation

1. 96 node Decentralized Learning

• Fully connected is the upper bound: high comm.

2. CIFAR-10 Non-IID Partitioning

- Dirichlet Distribution ($\alpha = 0.1$)
- 3. GN-LeNet with SGD
- 4. EL outperforms baselines
 - Higher accuracy at a lower cost

[2] Lian, Xiangru, et al. "Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent." Advances in neural information processing systems. NeurIPS, 2017.

