
A Language for Microarchitectural Security Evaluation
Guokai Chen Thomas Bourgeat

École Polytechnique Fédérale de Lausanne
Introduction

Attack surfaces span modern microarchitecture

Challenge and Solution

Key Features

Evaluation

Yet still a pain to construct attack programs
• Limited and verbose control over address layout

• Heavy usage of non-portable assembly

• Mixture of victim and attacker

• Lack of primitives

• Black boxes – No access to march design data
• Rely on reverse engineering

Mismatch between language and usage
• High-level language abstract away march details
• Assembly is too low-level to be easy-to-construct,

portable and understandable
Solution: A language for microarchitectural
security evaluation
• Highly portable
• Fine-grained layout control
• Clear victim-attacker isolation
• Enable novel open source design assisted flow

World Isolation
Victim{

Control{
Attacker() {
}

}
}

Constraint based layout control

Description and march decoupling

Underlying

No more pseudo code!

Reproduction of classical and novel attacks
• Flush+Reload
• Prime+Probe
• Spectre
• Load violation predictor side channel
• Phantom
On Intel 14th Gen, AMD Zen 5 and XiangShan
Enabling novel workflow assisted by open source
microarchitectures

• Offers description correctness before testing on
commercial platforms

• Identified a new Phantom variant: Phantom-coherence,
enabling checking Phantom fetch from data cache side

Description

XiangShan
Param

XiangShan

Fail

Correct
description

Pass

Hypothesis
Param

Target
machine

Fail

Pass Target
Param

Target
PoC

Idea

