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Motivation

Secure aggregation [1]:
- Adds communication overhead Pairwise additive masking

» Makes compression hard

» Is not compatible with sparsification out of box For Va,b € R and Ve € R:

a+b=(a+c)+(b—rc)
Privacy at the cost of communication overhead Adding and subtracting a randomly selected number from a sum does not
change its value

Overview

Network topology 0 Sparsification @ Mask with 2-hop neighbors

@ Send to receiving node

@*LN

Algorithm Properties
 Performed after sparsification 1. Privacy guarantees:
 Performed in two stages:  CESAR is resilient against honest-but-curious adversaries
—Prestep: Second degree neighbours coordinate to mask mutually selected in- - CESAR is resilient against collusion
dices before sending them to the common neighbor 2 Communication overhead:
—Model exchange and aggregation: Indices with less than s masks applied are » Prestep (protocol overhead): O(adé2.,,) (o - percentage of selected parameters;

discarded before transmitting the model (s called masking requirement) d - total number of parameters; dmayx - maximum degree in the network)
» Masks cancel out upon plain averaging
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Evaluation setting

« Datasets: CIFAR, CelebA, MovielLens  Data distribution: 11D with TopK, NIID with random subsampling
« Baseline: D-PSGD [2] * Network size: 96 nodes
* Masking requirement (s): 1  Topology: 6-regular
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