
Modifier les
styles du texte
du masque

Adaptive Metaprogramming in Datalog

Anna Herlihy, Guillaume Martres, Anastasia Ailamaki, Martin Odersky

Adaptive Recursive Query Optimization

Running Example: Graspan’s Context-Sensitive Pointer Analysis (CSPA) on Apache httpd

Datalog is a logic-based programming language that has been used in Java program analysis, TensorFlow,
Rust compilation, Ethereum VM, AWS network analysis, and other performance-critical applications.

Dual-socket Intel Xeon E5-2650L v3 12 physical cores per socket and 396GB RAM.

Staged Unoptimized Queries Staged Hand-Optimized Queries Ahead-of-time + Staged Queries

The wrong execution plan can significantly impact
performance: CSPA generates subqueries that have
a factorial possible left-deep join orderings, and
selecting a suboptimal join order in just a single
subquery in only the first iteration leads to extra
materialization of 6534GB.

The Carac compiler uses Adaptive Metaprogramming
to partially evaluate the input Datalog program and
continuously regenerate specialized and parallelized
imperative programs.

Up to 5000x speedup over unoptimized queries and 6x over hand-optimized queries
using adaptive metaprogramming.

Adaptive Metaprogramming uses Multi-Stage Programming to continuously reoptimize Datalog via phases of
compile and runtime code generation, so the optimizer can adapt to new information as it becomes available.

Advanced program analysis requires solving constraint systems with complex, recursive interdependencies.

The optimal query plan changes during execution
so traditional relational database query optimization
techniques cannot scale to iterative query execution.

Carac compiles Datalog to an IR using a Futamura
Projection and the bottom-up Semi-Naive algorithm.
The IR is lowered to various targets, including:

(1) Scala 3 Quotes and Splices
(2) JVM bytecode
(3) Higher-order lambda functions

LAMP

“Capabilities for Typing Resources and Effects” (TMAG-2_209506/1) ICDE2024

0

1

2

3

4

5

6

Sp
ee

du
p

ov
er

 "o
pt

im
iz

ed
"

Benchmark

Andersen's Points-To Inverse Functions

JIT IRGenerator
JIT Lambda Blocking
JIT Bytecode Async
JIT Bytecode Blocking
JIT Quotes Async
JIT Quotes Blocking

Indexed | Unindexed

Context-Sensitive
Pointer Analysis

Context-Sensitive
Dataflow Analysis

0

1

2

3

4

5

6

Sp
ee

d
up

 o
v

er
 "

op
tim

iz
ed

"

Benchmark

Andersen's Points-To Inverse Functions

JIT IRGenerator
JIT Lambda Blocking
JIT Bytecode Async
JIT Bytecode Blocking
JIT Quotes Async
JIT Quotes Blocking

Indexed | Unindexed

Context-Sensitive
Pointer Analysis

Context-Sensitive
Dataflow Analysis

1

21

41

61

81

Benchmark

 JIT-lambda
 Facts+rules macro
 Rules macro
 Facts+rules macro
 Rules macro

Ackermann Fibonacci Primes

Sp
ee

du
p

ov
er

 "
u

no
pt

im
iz

ed
"

Where possible, JIT compilation is combined with
macros to push expensive optimizations offline.

Carac: An Adaptive Just-in-time Datalog Compiler

