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Motivation Experiments

Focus on three NLP tasks:

Closed Information Extraction (clE): Extracting facts from text using a predefined set of entities and
relations.

Entity Disambiguation (ED): Identifying specific entities from a knowledge base mentioned in the
text.

Constituency Parsing (CP): Parsing sentences into constituency trees, capturing their syntactic
structure.

Each task presents unique challenges for language models, especially in few-shot settings. The
experimental setup aims to demonstrate the effectiveness of GCD in improving language model
performance across these tasks.
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Fig. 1: Grammar-constrained decoding (GCD) ap-
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» The goal is to extract a list y of subject—
relation—object triplets from the input text x.
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