EPFL dab

Grammar-Constrained Decoding For Structured NLP Tasks without Fine-Tuning

Saibo Geng, Martin Josifoski, Maxime Peyrard*, Robert West Data Science Lab@EPFL, Switzerland *Université Grenoble Alpes, CNRS, Grenoble INP, LIG saibo.geng@epfl.ch



Motivation

Experiments

Focus on three NLP tasks:

Closed Information Extraction (cIE): Extracting facts from text using a predefined set of entities and relations.

Entity Disambiguation (ED): Identifying specific entities from a knowledge base mentioned in the text.

Constituency Parsing (CP): Parsing sentences into constituency trees, capturing their syntactic structure.

Each task presents unique challenges for language models, especially in few-shot settings. The experimental setup aims to demonstrate the effectiveness of GCD in improving language model performance across these tasks.

- LLM struggles with generating complex structured outputs without specific finetuning, like json or XML documents.
- Grammar-Constrained Decoding (GCD) uses formal grammars and incremental parsing to force the generation of valid outputs.
- GCD is a unified framework for structured NLP tasks, leveraging the strengths of existing language models without the need for costly finetuning.

Grammar Gallery

(1) Closed information extraction: see Fig. 1 (2)* Entity disambiguation: $S \rightarrow \ell m [\alpha] r$, where ℓ is left context of mention m, r is right context, and α is disjunction of candidate entities for mention *m* (3)* Constituency parsing: $S \rightarrow B_{0,0}$; $B_{i,i} \rightarrow [\alpha (B_{i,i+1} | C_{i,i})]$ $_{j+1}); C_{i,j} \to X_i (C_{i+1,j} | E_{i+1,j}); C_{n,j} \to E_{n,j}; E_{i,j+1} \to \mathbf{J}(E_{i,j} | B_{i,j});$ $E_{n, i+1} \rightarrow \mathbf{I}E_{n, i}; E_{n, 0} \rightarrow \varepsilon$, where $\alpha = (S|NP|VP|...)$ (4)* Coreference resolution: $S_i \rightarrow X_i$ [$(X_1 \mid \dots \mid X_n \mid \bot)$] S_{i+1} ; $S_n \rightarrow \varepsilon$, where \perp means "no referent" (5)* Part-of-speech tagging: $S_i \rightarrow X_i$ [(NOUN | VERB | ADJ | ...)] S_{i+1} ; $S_n \to \varepsilon$ (6)* Dependency parsing: $S_i \rightarrow X_i$ [(ROOT | NSUBJ | DOBJ | ...) $(x_1 \mid ... \mid x_n \mid \bot)] S_{i+1}; S_n \rightarrow \varepsilon$, where \bot means "no head" (7)* Word sense disambiguation: $S_i \rightarrow X_i$ [α_i] S_{i+1} ; $S_n \rightarrow \varepsilon$, where α_i is the disjunction of all WordNet glosses of word x_i (8)* Phrase chunking: $S \to B_0; B_i \to [C_i; B_n \to \varepsilon; C_i \to X_i]$ $(C_{i+1} \mid \alpha] \mid B_{i+1}); C_n \rightarrow \alpha], \text{ where } \alpha = (NP \mid VP \mid PP \mid ...)$ (9)* Semantic role labeling: Same as phrase chunking, but with $\alpha = (TARGET | ARG0 | ARG1 | ...)$ (10)* Entity linking: Same as phrase chunking, but with α

the disjunction of all KB entity names (or \perp for "no entity") (11)* CCG parsing: Same as constituency parsing, but with syntactic types (e.g., (S\NP)/NP)) instead of constituent labels. Extra constraints ensure that nodes have at most two children and that syntactic types combine correctly.

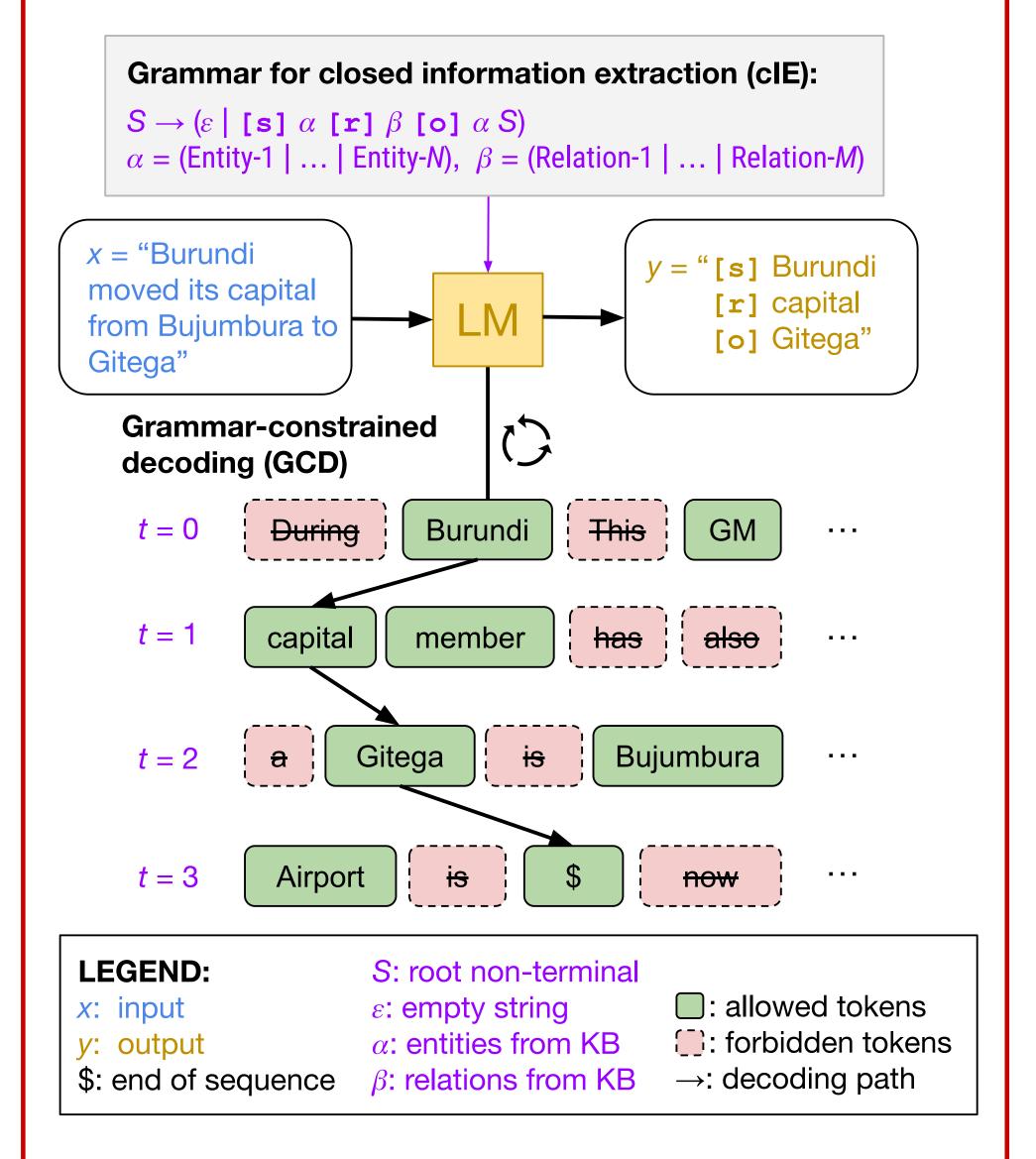
Results on CP

Metho	F1	Validit	ЗУ					
Few-shot unconstrained								
LLaMA	28.1	54.	3					
LLaMA-13B				42.8	69.	4		
LLaMA-33B				42.9	64.2			
Few-shot constrained (IDG)								
LLaMA	45.8	100.0						
LLaMA-13B				53.4	100.0			
LLaMA	54.6	100.0						
Improvements in Information Extraction 100 F1 Score 100.0 100.0 F1 Score GCD 100.0 100.0 100.0								
Validity Validity GCD Improvement	_		-		-			
			69.4		64.2			
60	54.3	53.4		54.6				
45.8 40 28.1		42.8		42.9				
20								
0 LLaMA-7B LLaMA-13B LLaMA-33B Method								

GCD constrains language model outputs at decoding time based on a formal grammar.

Method

GCD employs an incremental parser as a completion engine, guiding the model to produce only grammatically consistent results.



(12)* Question answering: $S \rightarrow [q] [A]; A \rightarrow (\varepsilon \mid \alpha A),$ where q is the question and α the disjunction of all vocabulary words

(13)* Extractive summarization: $S \rightarrow (\varepsilon | [\alpha] S)$, where α is the disjunction of all sentences from input *x* (14)* Semantic parsing with λ -calculus: A logical form is a rooted tree, generated by a context-free grammar

Fig. 2: Formal grammars for 14 structured NLP tasks, highlighting the general applicability of GCD.

Results on IE

Method	Precision	Recall	F1
Weakly supervised			
GenIE T5-base	49.6 ± 0.3	26.8 ± 0.2	34.8 ± 0.2
Few-shot unconstrained			
LLaMA-7B	10.2 ± 0.5	14.3 ± 0.7	11.9 ± 0.5
LLaMA-13B	10.3 ± 0.6	17.0± 0.9	12.9 ± 0.6
LLaMA-33B	14.1 ±1.0	23.1 ± 1.4	17.5 ± 1.0
Vicuna-7B	12.5± 0.2	16.7 ± 0.1	14.3± 0.2
Vicuna-13B	13.4 ± 0.2	15.2± 0.2	14.4 ± 0.2
Few-shot constrained			
LLaMA-7B	27.9 ± 0.6	20.2 ± 0.5	23.5 ± 0.5
LLaMA-13B	36.2 ± 0.7	26.5 ± 0.5	30.6 ± 0.5
LLaMA-33B	39.3 ± 0.9	33.2 ± 0.8	36.0 ± 0.7
Vicuna-7B	25.4± 0.5	15.8± 0.3	19.5 ± 0.3
Vicuna-13B	38.7 ± 1.0	19.8 ± 0.8	26.1 ± 0.8

Fig. 4: Grammar-constrained decoding (GCD) appiled to CP task

Conclusion

We found that:

- GCD significantly improves the performance of LLMs on structured output generation tasks.
- ► GCD is more effective with larger LLMs. When possible, use the largest available LLM.
- Grammars should be as restrictive as pos-Consider using **input-dependent** sible. grammars.
- While GCD is broadly applicable to many tasks, it is not a silver bullet. Tasks that require syntactic understanding of the input (e.g., constituency parsing) are less suitable for GCD.

- Fig. 1: Grammar-constrained decoding (GCD) appiled to IE task
- \blacktriangleright The goal is to extract a list y of subjectrelation–object triplets from the input text x. Subjects and objects are constrained to be Wikidata entities, e.g. Ludwig van Beethoven is a valid subject, but Ludwig Beethoven is not.

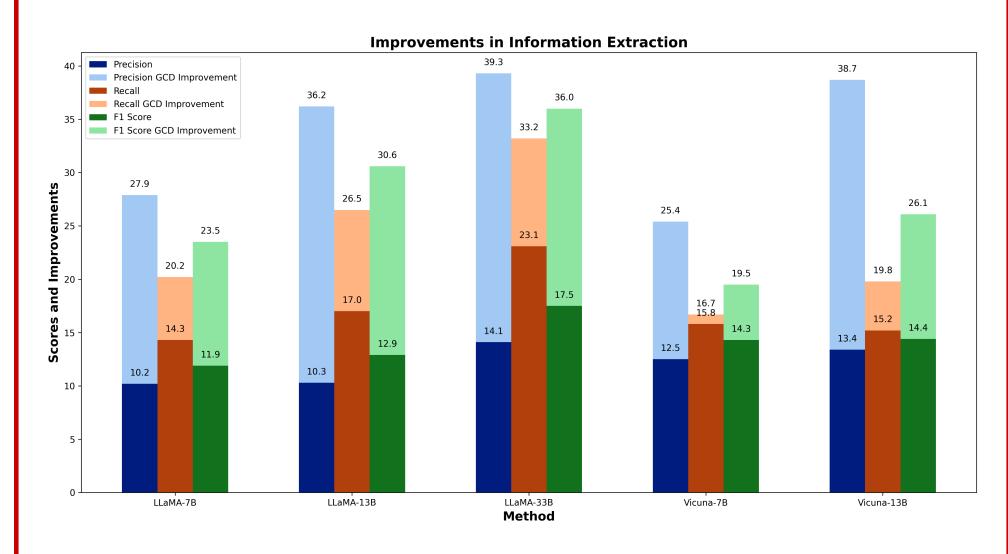


Fig. 3: Grammar-constrained decoding (GCD) appiled to IE task

CFG is coming to HuggingFace!

Check out our CFG library for Hugging-Face Transformers at https://github.com/ epfl-dlab /transformers-CFG. Use it to generate **json**, **chess moves**, or even **C code**!

.

QR Code

