

Test-Time View Selection for Multi-Modal Decision Making Eeshaan Jain, Johann Wenckstern, Benedikt von Querfurth, Charlotte Bunne

Contributions

- ... unified framework for modality and feature selection
- ... view selection at inference time without ground-truth preferences
- ... learning to guide **test-time selection** through foundation models

MAVIS Framework

Aim: learn the best selection rule σ^{ℓ} for any patient starting from any view ℓ

Challenges: inferring the **optimal** selection rule is $\Omega(2^{|\mathcal{V}|})$ optimal selection rules different for every patient

Metrics: Acc_k = $\mathbb{E}_{p \sim \mathcal{P}} \left| \mathbb{E}_{y \sim \mathcal{H}_{k}^{\ell}} \left[\mathbb{I}\{y = y_{p}\} \right] \right|$ foundation model $(h \circ F) \left(\{ V_{\sigma^{\ell}(p)(1)}, \dots, V_{\sigma^{\ell}(p)(k)} \} \right)$ $\operatorname{Unc}_k = 1 - \operatorname{TCP}_k$

 σ^{ℓ} is optimal: If σ^{ℓ} is k-optimal for every $k \leq |\mathcal{V}|$

 \rightarrow If exists, is necessarily greedy!

 $(h \circ F)(\{V_{\sigma^{\ell}(p)(1)}, ..., V_{\sigma^{\ell}(p)(k-1)}, V_i\})(y_p)$ $\sigma^{\ell}(p)(k) =$ $rg \max$ $i \in [|\mathcal{V}|] \setminus \bigcup_{j=1}^{k-1} \{ \sigma^{\ell}(p)(j) \}$

Learning k-optimal selection rules for $k \ll |\mathcal{V}|$:

 $c_t(s_t, i) = \beta \left(\log \left\lfloor (h \circ F)(\{V_{\sigma_t^{\ell}(1)}, ..., V_{\sigma_t^{\ell}(t)}, V_i\})(y) \right\rfloor \leftarrow \text{instantaneous reward}$ $-\log\left[(h\circ F)(\{V_{\sigma_t^{\ell}(1)},...,V_{\sigma_t^{\ell}(t)}\})(y)\right]\right),$

Acknowledgements: Yexiang Cheng (EPFL), Phil Cheng (HUG)

