
Rack-Scale Servers for the Post-Moore Era
Pooria Poorsarvi Tehrani, Mohammad Arman Soleimani

Motivation

Rack-Scale Computing

•Disaggregate hardware resources across a rack
•Use intra-rack fabrics for rapid data movement
•Communicate among servers via Pod Interface Chip (PIC)
•Many unclear hardware and software design elements

•Hardware 
resources are 
underutilized 
and wasted in 
data centers

Proof of Concept

• Support different levels of simulation 
fidelity

• PoC scope: emulate just the CPU and 
disaggregated memory with the PICs on 
their path

Baseline ArchitectureDesign Interface
PoC 

CPU-side 
PIC 

Emulator

Far Memory 
Emulator

PoC 
Mem-side 

PIC 
Emulator

ld/st

forward
ld/st

forward
ld/st

resp

resp

resp

• Defines inter-simulator 
messages

• Synchronizes 
timestamps

[Li ‘23]

How do we design a simulation infrastructure to use for deeper studies into rack-scale design? 

CPU
Far 

DRAM

Up to 25% 
under high 
load 

✔ Lower maintenance costs
✔ Easier resource pooling
✔ Isolated points of failure

50% of VMs 
use <50% of 
provisioned 
memory

Local 
DRAM

Rack 
Fabrics + 

PICs

• Goal: Flexible Multi-Node Design
• Slot in different simulators
• Easily extend to add new nodes
• Easily modify existing nodes

• Requires rearchitecting hardware and 
software

• Needs new tools and simulators for 
research

•Hardware Resource Disaggregation is a promising solution

Current + Future Work
• Current areas of work

• Simbricks communication cost
• Simbricks sync cost
• Memory characteristics of data centers
• Qflex: timing simulator, supporting 

statistical sampling on 128 cores
• Next steps for rack-scale research

• Add more PIC functionality
• Investigate higher bandwidth serial fabrics 

to interface with remote memory
• Study global address translation and 

coherence in memory pooling
• Expand simulator functionality

Current Solutions

Compute Express Link (CXL)
Interconnect between processors and 
devices such as memory and accelerators

✔ Coherent access to system and device 
memory

✔ Enables memory pooling and sharing devices 
Example: Pond [Li ‘23] saves 7% DRAM using a 
shared memory pool

• Cost of CXL hardware diminishes cost 
saved from pooling [Levis ‘23]

• High latency hurts performance
• Coherency needs might be different 

from what CXL implements


