EPFL

1) Problem

- Neural networks (NNs) deployed in real world will encounter data with naturally occurring distortions.
- Their predictions under such shifts from the training data are unreliable, e.g. see surface normals results below.

4) Results for adversarial distortions

\star Improved robustness to attacks *without* adversarial training

	Normal			Reshade				Depth				
6 Method	2	4	8	16	2	4	8	16	2	4	8	16
Baseline UNet	8.23	11.53	13.03	14.37	17.92	22.78	27.26	34.40	5.50	6.76	8.36	9.80
Deep ensembles	7.49	11.13	13.36	15.65	15.66	21.95	27.75	34.98	5.45	6.68	8.27	10.52
Inv. var. merging	7.60	8.89	10.40	12.77	15.56	16.55	18.93	22.01	4.94	4.99	5.93	6.75
Adv. T. (lower bound error)	5.78	5.74	5.45	5.53	9.39	8.98	8.07	8.20	2.23	2.27	2.39	2.74

5) Results for natural distortions

\star Notable improvements especially in fine-grained regions

RGB

(re)Shading Deep Ensembles Ground Truth Baseline Ours

Robustness via Cross-Domain Ensembles

Teresa Yeo*, Oğuzhan Fatih Kar*, Amir Zamir

crossdomain-ensembles.epfl.ch

2) How do we obtain robust predictions?

- Middle domains: Consider a set of transformations (examples below) that are each invariant to a particular change in the input image (e.g. brightness).
- Learn the mappings: Train a model from each middle domain to Ο target domain. Also estimate the uncertainty by a simple parameterization of the output, using a likelihood loss.
- **Uncertainty-guided merging:** Each model will contribute to the Ο final prediction based on its confidence.

0					
	De				
Ground Truth	Ours	Deep Ensembles	Baseline	Ground Truth	Ours

pth

Deep Ensembles

3) Avoiding overconfident predictions

- while keeping predictions fixed.

Uncertainty estimates under distribution shifts are poorly calibrated: Models output poor predictions with high confidence. This reduces the quality of uncertainties as merging weights. **Calibration:** We propose sigma training as a calibration stage to alleviate this. It encourages the model to output high uncertainties

> \star The resulting uncertainties have stronger correlation with errors for *unseen* corruptions.

 \star Middle domains promote ensemble diversity and reduce NN tendency to learn from superficial cues. Manual handpicking is not required. They add negligible computation overhead.

 \star Using uncertainties as weights significantly outperforms uniformly averaging the ensemble predictions.

 \star The proposed method improves robustness for several tasks and datasets under unseen adversarial & non-adversarial shifts.