
General-purpose
applications

EvOS: Kernel-userspace co-design for high performance applications

● How to exhaustively identify beforehand whether an application
can benefit from such a framework?

● How do we enable synchronization and concurrency control
between the eBPF program and the userspace application?

Read/write application
data structures

Transparent access to user
space memory

Express IO requests using
a task abstraction Lower maintenance

Accelerate existing
applications

Control over task
scheduling

Bounded userspace data
structure traversal

Integrate user space task
abstractions with eBPF

BPF Coroutines

Assertions to simplify
program writing

eBPF threads with a
relaxed safety model

● Precisely define the safety properties of the verifier, and sketch a
proof of correctness about the impact of extensions on the
verification model.

● We relax the safety of eBPF in certain known safe contexts, while
still maintaining invariants that interacting programs rely on
through verification, enabling flexibility with safety.

● How do we formally reason about the safety of extensions we add
to the eBPF runtime in the Linux kernel?

Specializing the OS for high-performance applications is hard

EvOS:
Application-Defined OS Evolution

Kumar Kartikeya Dwivedi Rishabh Iyer Sanidhya Kashyap

RS3LAB

Applications are co-designed as a kernel+userspace hybrid for better performance with the same flexibility.

Research questions Potential solutions

Kernel-bypass
solutions

Current eBPF-based
approaches

Programmability Safety Data structure
access/design Use the Linux kernel

Reuse existing OS stack,
rewrite only when needed

Too restrictive due to
verifier limitations

Lack of generality

A difficult programming
model

D
S

D
S

● We map performance metrics to bottlenecks which can be used to
identify use cases that will benefit from the hybrid approach of
co-design through our framework.

Do not retain benefits of a
general purpose OS

Maintenance burden,
require application rewrite

Support for sharing
hardware is poor

Suffer from overhead of the
OS stack

IO completion models only
optimize issue of IO requests

Pay the cost of features they
never use

Overview

