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EvOS: Kernel-userspace co-design for high performance applications
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Research questions
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Figure 5: Packet forwarding throughput. Sending and receiving on
the same interface takes up more bandwidth on the same PCI port,
which means we hit the PCI bus limit at 70 Mpps.

e How do we formally reason about the safety of extensions we add
to the eBPF runtime in the Linux kernel?

e How to exhaustively identify beforehand whether an application
can benefit from such a framework?

e How do we enable synchronization and concurrency control
between the eBPF program and the userspace application?

Potential solutions

proof of correctness about the impact of extensions on the

e Precisely define the safety properties of the verifier, and sketch a
verification model.

identify use cases that will benefit from the hybrid approach of

e We map performance metrics to bottlenecks which can be used to
co-design through our framework.

still maintaining invariants that interacting programs rely on

e We relax the safety of eBPF in certain known safe contexts, while
through verification, enabling flexibility with safety.

Applications are co-designed as a kernel+userspace hybrid for better performance with the same flexibility.




