EvOS:

RS3LAB

Application-Defined OS Evolution

Kumar Kartikeya Dwivedi

Rishabh Iyer Sanidhya Kashyap

Kernel-bypass

General-purpose
applications

Current eBPF-based
approaches

60 , ! 60

T
No Opt. R

solutions B 5o focmpommsnmee TSOIGRO w5y
N I S -_ye-—ie
{Suffer from overhead of the} [Do not retain benefits of a } [Too restrictive due to } S | el E
OS stack general purpose OS verifier limitations °§_ 2
£ | o
S0 B
10 completion models only Maintenance burden, : £ a
- .. . - .. . Lack of generality
optimize issue of 10 requests require application rewrite
All Opt. w/o TSO/GRO w/o Jumbo
[Pay the cost of features they} [Support for sharing } [A difficult programming } R —
never use hardware is poor model

EvOS: Kernel-userspace co-design for high performance applications

[Express 10 requests using} [Assertions to simplify J
a task abstraction program writing

[Integrate user space task } [Bounded userspace data }
abstractions with eBPF structure traversal

{ BPF Coroutines J [eBPF threads with a }

relaxed safety model

Programmability gjszss;t/:;‘::;‘gr: Use the Linux kernel

Read/write application }
data structures

[Lower maintenance J

Transparent access to user} [Reuse existing OS stack, }

space memory rewrite only when needed

Control over task } {

Accelerate existing J
scheduling

applications

Overview

D
[Process

i

write() T read() sendmsg() Trecvmsg()
L_ Syscall _J LSyscaIl _J

eBPF HeBPF
v | v | .
X File Descriptor] Sockets eBPF

))

— < VFS eBPF TCP/IP chempF
— ;2 Block Device] Network Device]

WHeBPF ¢ > éeBPF

Storage J [% Network W
HeBPF

Research questions

p99 Latency (ekc) and p99 Latency (rdb)

B p99 Latency (ekc) [p99 Latency (rdb)

Ops/sec (ekc) and Ops/sec (rdb)

B Ops/sec (ekc) [Ops/sec (rdb)
2.0 8000

1.5 6000
1.0

4000

0.5 2000

0.0
1:1000

1:100 1:1000

Update Ratio

—e— DPDK (different NIC)
—#— XDP (same NIC)
—4— XDP (different NIC)

1 2 3 4 5 6
Number of cores

Figure 5: Packet forwarding throughput. Sending and receiving on
the same interface takes up more bandwidth on the same PCI port,
which means we hit the PCI bus limit at 70 Mpps.

e How do we formally reason about the safety of extensions we add
to the eBPF runtime in the Linux kernel?

e How to exhaustively identify beforehand whether an application
can benefit from such a framework?

e How do we enable synchronization and concurrency control
between the eBPF program and the userspace application?

Potential solutions

proof of correctness about the impact of extensions on the

e Precisely define the safety properties of the verifier, and sketch a
verification model.

identify use cases that will benefit from the hybrid approach of

e We map performance metrics to bottlenecks which can be used to
co-design through our framework.

still maintaining invariants that interacting programs rely on

e We relax the safety of eBPF in certain known safe contexts, while
through verification, enabling flexibility with safety.

Applications are co-designed as a kernel+userspace hybrid for better performance with the same flexibility.

