

Application-Defined OS Evolution

Kumar Kartikeya Dwivedi Rishabh Iyer Sanidhya Kashyap

Specializing the OS for high-performance applications is hard

EvOS: Kernel-userspace co-design for high performance applications

Programmability

Safety

Data structure access/design

Use the Linux kernel

Overview

Figure 5: Packet forwarding throughput. Sending and receiving on the same interface takes up more bandwidth on the same PCI port, which means we hit the PCI bus limit at 70 Mpps.

Research questions

• How do we formally reason about the safety of extensions we add to the eBPF runtime in the Linux kernel?

- How to exhaustively identify beforehand whether an application can benefit from such a framework?
- How do we enable synchronization and concurrency control between the eBPF program and the userspace application?

- Precisely define the safety properties of the verifier, and sketch a proof of correctness about the impact of extensions on the verification model.
- We map performance metrics to bottlenecks which can be used to identify use cases that will benefit from the hybrid approach of co-design through our framework.
- We relax the safety of eBPF in certain known safe contexts, while still maintaining invariants that interacting programs rely on through verification, enabling flexibility with safety.

Applications are co-designed as a kernel+userspace hybrid for better performance with the same flexibility.