Novelty drives human exploration even when it Is suboptimal
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e How do humans explore environments with sparse rewards”

Intrinsically motived RL algorithms have been proposed in computational and behavioral neuroscience as models of human exploration [1].

However, different choices of intrinsic reward result in fundamentally different exploration strategies. [2]

e Which intrinsic reward explains human exploration best?
Our contribution: Inspired by the “noisy TV” problem in machine learning [3], we design an experimental paradigm where three representative intrinsic

rewards (novelty [4,5], surprise [6,7], and information-gain [8-10]) make different behavioral predictions. \We test these predictions against human behavior.

[1] Gottlieb and Oudeyer, 2018; 2] Aubret et al., 2022; [3] Burdaet al., 2019; [4] Bellemare et al., 2016; [5] Xu and Modirshanechi et al., 2021;
[6] Kobayashi et al., 2019; [7] Pathak et al., 2017; [8] Itti and Baldi, 2009; 9] Schmidhuber, 2010; [10] Horvath et al., 2021
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2. Experimental paradigm; . 2.1. Underlying map (unknown to the participants) ~ {2.1.1. Transitions to stoch. states 2.1.3. State representation
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2.2. Instruction given to participants: There are 3 goal states with different reward values:
e Participants were instructed to move to any of the three goal states 5 times (= 5 episodes).

2 CHF [and| 3 CHF | and| 4 CHF CHF: Swiss Franc

2.3. Reward manipulation: There was only one goal state (unknown to the participants): >CHE |or|3CHF | orl 4CHE | CHF: Swiss Franc

e \We focus on the group of participants with lowest reward:
(see our preprint for the other groups)

2 CHF | | Highly motivated to explore in episodes 2-5 to find the larger rewards!
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3. Results ' 3.1. Humans and novelty-seeking agents exhibit a persistent attraction to stochasticity during eipsodes 2-5.
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3.2. Humans and novelty-seeking agents show a similar preference for GA and SA during Epi 2 | 3.3. Bayesian model-selection:
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4. Conclusions

1. Human participants who are optimistic about the availability of goal states of higher value than those already known exhibit a persistent attraction to stochasticity.

2. This behavior is consistent with that of novelty-driven agents but NOT with those driven by information-gain (= optimal behavior) or surprise.
3. Our work suggests that humans use suboptimal but computationally cheap policies (such as novelty-seeking) for exploration in complex environments.
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