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1. Introduction
How do humans explore environments with sparse rewards?

Which intrinsic reward explains human exploration best?

Intrinsically motived RL algorithms have been proposed in computational and behavioral neuroscience as models of human exploration [1].

Our contribution: Inspired by the “noisy TV” problem in machine learning [3], we design an experimental paradigm where three representative intrinsic
rewards (novelty [4,5], surprise [6,7], and information-gain [8-10]) make different behavioral predictions. We test these predictions against human behavior.

However, different choices of intrinsic reward result in fundamentally different exploration strategies. [2]

2. Experimental paradigm:
Multistep decision-making:
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purely novelty-seeking (N=500)

Predictions before data:

Analyses with data:

purely inf.-gain-seeking (N=500)

purely surprise-seeking (N=500)

human behavior (N=21)

fitted novelty-seeking (N=500)
(posterior pred. checks)
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corr.=0.09±0.1
p=0.54; BF=1/3.7

3.2. Humans and novelty-seeking agents show a similar preference for GA and SA during Epi 2

3.1. Humans and novelty-seeking agents exhibit a persistent attraction to stochasticity during eipsodes 2-5.

3.3. Bayesian model-selection:

SA: Stochastic action

GA: 
Good action

BA: Bad action
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3. Results
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0.51 ± 0.02 
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4. Conclusions
1. Human participants who are optimistic about the availability of goal states of higher value than those already known exhibit a persistent attraction to stochasticity.
2. This behavior is consistent with that of novelty-driven agents but NOT with those driven by information-gain (≈ optimal behavior) or surprise.
3. Our work suggests that humans use suboptimal but computationally cheap policies (such as novelty-seeking) for exploration in complex environments.
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2.1.2. Transitions from stoch. states
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2.1.1. Transitions to stoch. states 2.1.3. State representation

Representation in the
experiment:
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NA: Neutral act.

GA: 
Good act.

BA: Bad action

4 CHF3 CHFOR OR2 CHF2.3. Reward manipulation:

4 CHF3 CHFand and2 CHF2.2. Instruction given to participants: CHF: Swiss Franc

CHF: Swiss FrancThere was only one goal state (unknown to the participants):

We focus on the group of participants with lowest reward:
(see our preprint for the other groups) 2 CHF Highly motivated to explore in episodes 2-5 to find the larger rewards!

There are 3 goal states with different reward values:
Participants were instructed to move to any of the three goal states 5 times (= 5 episodes).


