Novelty drives human exploration even when it is suboptimal

Alireza Modirshanechi, Wei-Hsiang Lin, He A. Xu, Michael H. Herzog, and Wulfram Gerstner

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland; Contact: alireza.modirshanechi@epfl.ch;

1. Introduction

How do humans explore environments with sparse rewards?

Intrinsically motived RL algorithms have been proposed in computational and behavioral neuroscience as models of human exploration [1]. However, different choices of intrinsic reward result in fundamentally different exploration strategies. [2]

• Which intrinsic reward explains human exploration best?

Our contribution: Inspired by the "noisy TV" problem in machine learning [3], we design an experimental paradigm where three representative intrinsic rewards (novelty [4,5], surprise [6,7], and information-gain [8-10]) make different behavioral predictions. We test these predictions against human behavior.

[1] Gottlieb and Oudeyer, 2018;[6] Kobayashi et al., 2019;	[2] Aubret et al., 2022; [7] Pathak et al., 2017;	[3] Burda et al., 2019; [8] Itti and Baldi, 2009;	[4] Bellemare et al., 2016;[9] Schmidhuber, 2010;	[5] Xu and Modirshanechi et al., 2021; [10] Horvath et al., 2021
2. Experimental paradigr	n: 2.1. Underlying map	(unknown to the participants)	2.1.1. Transitions to stoch. sta	ates 2.1.3. State representation

• Participants were instructed to move to **any** of the three goal states **5 times** (= 5 episodes).

2.3. Reward manipulation: There was only one goal state (unknown to the participants):

2 CHF OR 3 CHF OR OR 4 CHF CHF: Swiss Franc

 We focus on the group of participants with lowest reward: (see our preprint for the other groups)

1.0

 $\square \supseteq$

3.2. Humans and novelty-seeking agents show a similar preference for GA and SA during Epi 2 | 3.3. Bayesian model-selection:

0 model posterior probability 0.7

p=0.97

4. Conclusions

SA: Stochastic action

1. Human participants who are optimistic about the availability of goal states of higher value than those already known exhibit a persistent attraction to stochasticity.

2. This behavior is consistent with that of novelty-driven agents but NOT with those driven by information-gain (~ optimal behavior) or surprise.

3. Our work suggests that humans use suboptimal but computationally cheap policies (such as novelty-seeking) for exploration in complex environments.

This research was supported by Swiss National Science Foundation No. CRSII2 147636 (Sinergia), No. 200020_184615, and No. 200020_207426 and by the European Union Horizon 2020 Framework Program under grant agreement No. 785907 (Human Brain Project, SGA2).