
LISA
ProofAssistant inScala

Simon Guilloud, Sankalp Gambhir, Viktor Kunčak

• A tool to formalize mathematics

• Based on first order logic and set theory

• Used like a Scala library

Writing Proofs

val fixedPointDoubleApplication = Theorem(
∀(y, P(y) =⇒ P(f(y))) ⊢ P(x) =⇒ P(f(f(x)))

) {
assume(∀(x, P(x) =⇒ P(f(x))))
val step1 = have(P(x) =⇒ P(f(x))) by InstantiateForall
val step2 = have(P(f(x)) =⇒ P(f(f(x)))) by InstantiateForall

have(thesis) by Tautology.from(step1, step2)
}

• States and proves a theorem
• Actual Scala code with Domain Specific Language
• Programming features and proofs can be mixed to write

automated proof tactics.

Kernel

• Deduction system is
Sequent Calculus.

• Quadratic algorithm to
normalizes formulas.

• Based on Ortholattices

− ≈ Boolean Algebra
without distributivity.

− Many syntactic
transformations
automated

− Shorter, simpler proofs
− No heuristic

Set Theory

• Library based on ZFC
• Can formalize all

mathematics
• Contains (yet)

− Functions and Relations
− Transfinite Recursion

(ordinals)
− Cantor’s theorem

Contact
Simon Guilloud
simon.guilloud@epfl.ch

Laboratory For
Automated Reasoning
And Analysis

Going Further

github.com/epfl-lara/lisa

Interested in joint work or a project? Contact us!


