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1. Streaming challenges
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Performance
constraints:

- Low latency

- Exact answers

Highly volatile workloads Continuous queries =
High input rate Must adapt to the
workload seamlessly

3. Partitioning: How it is currently done
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SELECT * FROM Stream S
WHERE S.v > 10
GROUP BY S.k
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Hash partitioning Skewed workloads lead

to stragglers
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Changing the hash
Q;I function comes at the cost
of state migration

Key splitting
. [FZZE Allows for balancing the
, o load of partial aggregation
‘ Y £ Final aggregation can
o - split key e become the bottleneck
final
aggregation

5. Dalton scales to many partitioners

Q-tables:

_ Maintain information

~ about the local hot keys
“&- Optimal policy for local
" distribution

Note: Synchronization

QR computes messages can be a bottleneck!

and sends to partitioners a global policy

that maximizes aggregate throughput We propose a synchronization

protocol that adjusts the sync
frequency at runtime.

7. Conclusion

Dalton
« learns partitioning policies at runtime with minimal overhead

« quickly adapts to the distribution and is able to scale not
only the processing workers but also the partitioners

« outperforms the state-of-the-art by a factor of 1.3-6.3x

2. More resources + Better performance

overloaded !

Uneven assignments

4

Stragglers and
Resource underutilization

Q
y

/ -

NG

/

4. Dalton adapts partitioning at runtime
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S i Exploration & Exploitation
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Hashing

SRC

key splitting

* Rewards computed by a cost model that balances partial and
final aggregation

« Continuously learn rewards

« Exploitation: leverage acquired experience

« Exploration: is more splitting beneficial?

6. Dalton maximizes throughput
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Dalton is the only algorithm that
adapts to the data distribution and scales to multiple instances

8. More streaming challenges

 Unbounded data can lead to an unbounded state
« Multi-query optimization is crucial since queries run forever

 The query plan must be adapted upon addition of a new query
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