
Dalton: Learned Partitioning for Distributed Data Streams
Eleni Zapridou, Ioannis Mytilinis, Anastasia Ailamaki

firstname.lastname@epfl.ch

1. Streaming challenges

3. Partitioning: How it is currently done

Skewed workloads lead 
to stragglers

Changing the hash 
function comes at the cost 
of state migration

Allows for balancing the 
load of partial aggregation

Final aggregation can 
become the bottleneck

Highly volatile workloads
High input rate

Performance 
constraints:
- Low latency
- Exact answers

Continuous queries à
Must adapt to the 
workload seamlessly

4. Dalton adapts partitioning at runtime

5. Dalton scales to many partitioners 6. Dalton maximizes throughput

7. Conclusion

2. More resources ≠ Better performance 

Uneven assignments

Stragglers and
Resource underutilization

SRC FLTR AGGR OUT SELECT * FROM Stream S
WHERE S.v > 10
GROUP BY S.k
WINDOW 60 SLIDE 1 partitioning parallel

window
aggregation

Hash partitioning

Key splitting

• Rewards computed by a cost model that balances partial and 
final aggregation

• Continuously learn rewards
• Exploitation: leverage acquired experience
• Exploration: is more splitting beneficial?

key splitting

: split key
final 

aggregation

QR computes
and sends to partitioners a global policy
that maximizes aggregate throughput

Note: Synchronization 
messages can be a bottleneck!

We propose a synchronization 
protocol that adjusts the sync 
frequency at runtime.

1.4 - 2.6x speedup

1.8 - 4.4x speedup

1.3-6.3x higher throughput when 
the data distribution is skewed

1.4-4.4x higher throughput 
with two partitioning instances

Dalton is the only algorithm that
adapts to the data distribution and scales to multiple instances

Dynamic workload

Two partitioners

Dalton 
• learns partitioning policies at runtime with minimal overhead
• quickly adapts to the distribution and is able to scale not 

only the processing workers but also the partitioners
• outperforms the state-of-the-art by a factor of 1.3-6.3x

8. More streaming challenges

• Unbounded data can lead to an unbounded state
• Multi-query optimization is crucial since queries run forever
• The query plan must be adapted upon addition of a new query

Maintain information 
about the local hot keys
Optimal policy for local 
distribution

Q-tables:


