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Design Of Concurrent Data Structures Is Workload-Dependent

Use Case: List Used For A Scheduling Mechanism Criteria
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Composing Concurrent Data Structures Requires A Synchronization Wrapper For Atomicity
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Automatic Development Of Concurrent From Sequential Code Through Declarativity
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DCDS achieves ease of development and performance through declarativity and build-time specialization

Up to 4.5x Speedup With Build-Time Specialization In DCDS

Scalability of LRU Container Generated By Best Locking Granularity Depends On
- DCDS vs Hand-tuned Workload Operations
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