Declarative Concurrent Data Structures -
loanna Tsakalidou, Hamish Nicholson, Aunn Raza, and Anastasia Ailamaki I

Design Of Concurrent Data Structures Is Workload-Dependent

Use Case: List Used For A Scheduling Mechanism Criteria

Stack/LIFO Queue/FIFO Linked List With Mutable Nodes
Prioritize Tasks Arriving First Prioritize Tasks Arriving Last Prioritize Tasks Based On Duration
Thread's A previous
node
ﬂ head 5 Thread A: Thread B: !
Add value Remove value Thread's B
Thread A: current
M:gmue g hEd previous node current
. node node
(JZ ‘'a {@aa, @)
C Y @ e —— 4
Thread B: _ta 1—\— - — -(—L next | . ‘ s - ‘ o g _ _M
Remove value value |\ ‘ head tail

Thread A: Thread B:
Remove a Remove b

Composing Concurrent Data Structures Requires A Synchronization Wrapper For Atomicity

Map [Existence] The Synchronization Wrapper

- * serializes operations with a lock guard
OB 3 6

(LRU) * gives up performance benefits of individual data structures
Doubly Linked List [ordering]

Head
(MRU)

[]
II

Automatic Development Of Concurrent From Sequential Code Through Declarativity

Serial
Logical Physical Code
Data Structure
Specification |~ - = =

Customize DS Adapt locking Insert CC Export library or
Input based on granularity to primitives to create link DS to the
requirements the operations a thread-safe DS application
DCDS Framework l

MyDS.so/MyDs.hpp

DCDS achieves ease of development and performance through declarativity and build-time specialization

Up to 4.5x Speedup With Build-Time Specialization In DCDS

Scalability of LRU Container Generated By Best Locking Granularity Depends On
- DCDS vs Hand-tuned Workload Operations
'E' ’ m 1 lock
~ 04 — 6 B 2 locks
a > 5 m 3 locks
O —-DCDS — Hand-tuned a 4 locks
E— 0,3 S 4 m 6 locks
5 - m 12 locks
2 0,2 3 3 ® DCDS
i
g 0,1 y
= £ 1
0 -
0

4 8 18 32 o 12 6 4 3 2 1

threads # attributes accessed per operation

	Slide 1

