
 Induces limited changes to the C++ ABI
● Interactions with sizeof(), e.g., SFINAE

expressions

● Interactions with non-type++ code through a
wrapper or by not instrumenting theses classes

● Call a default constructor to initialize the vptr
for non-polymorphic object

● Listing of custom allocator
● Wrapper to communicate with external code

type++: Prohibiting Type Confusion
With Inline Type Information

Nicolas Badoux, Flavio Toffalini, Yuseok Jeon, Mathias Payer

Type confusion in C++

Derived 1

Base
Safe

Derived 2

Unsafe

Unrelated

void*

Unsafe

Safe

Only dynamic_cast are safe

CVEs in and many more…

type++ dialect: guarantees
● Every object has a type associated inline
● Enabling dynamic checks at run time
● Optimization: Only classes cast are typed
● Leverage standard Run Time Type Information

(RTTI) to instrument classes

type++ remove all risk of
derived type confusion in C++

Design & C++ ABI incompatibilities

-

“foo” Instrumented “foo”
vptr

forcibly
change

-

Evaluation

Code

Classes to
instrument

Warnings

Protected
binary

static_assert(sizeof(X) == sizeof(Y));

X
vptr Y≠ Y

LLVM

Implementation & Usage

EPFL EPFLEPFL, RUB UNIST

HexHive/typepp

Use case: partial Chromium
● 1’928 out of 2’099 classes protected
● 229 LoC modified
● Instrumentation incurs 1.42% overhead
● 94.6% of casts protected

Benchmarks: SPEC CPU 2006 & 2017
● 0.98% performance overhead
● 28x more casts protected than LLVM-CFI
● 122 type confusions found, 14 new

N. Badoux, F. Toffalini, J. Yuseok & M. Payer, “type󰎤󰎤: Prohibiting Type Confusion with Inline Type Information” in Network and
Distributed System Security Symposium, NDSS 2025, San Diego, USA, Feb. 24 - 28. DOI: 10.5281/zenodo.13687049.

“type++ is a dialect of C++ that enforces type safety.”

Icons credits: Anggara Freepik, {juicy_fish, justicon}@flaticon.com

