
   Induces limited changes to the C++ ABI
● Interactions with sizeof(), e.g., SFINAE 

expressions

● Interactions with non-type++ code through a 
wrapper or by not instrumenting theses classes

● Call a default constructor to initialize the vptr 
for non-polymorphic object

● Listing of custom allocator
● Wrapper to communicate with external code
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type++ dialect: guarantees
● Every object has a type associated inline
● Enabling dynamic checks at run time
● Optimization: Only classes cast are typed
● Leverage standard Run Time Type Information 

(RTTI) to instrument classes

type++ remove all risk of 
derived type confusion in C++
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Use case: partial Chromium
● 1’928 out of 2’099 classes protected
● 229 LoC modified
● Instrumentation incurs 1.42% overhead
● 94.6% of casts protected

Benchmarks: SPEC CPU 2006 & 2017
● 0.98% performance overhead
● 28x more casts protected than LLVM-CFI
● 122 type confusions found, 14 new
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“type++ is a dialect of C++ that enforces type safety.”
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