Proving The Absence of Bugs
Using Tests

Can Cebeci George Candea

Symbolic testing enables developers without
verification expertise to formally prove correctness
using a common testing-based paradigm

Current methods for building high-assurance software

Testing Verification

Can only discover bugs, not prove Either restricts the target system Qe
loops, pointers, or environment calls)

correctness Or requires (prohibitively costly)
High-coverage test suites are costly manual proofs

Widespread industry adoption Minimal industry adoption

Reconciling the two approaches: tests encode developer insight

* Developers write (symbolic) tests that check functional correctness
* Candidate invariants inferred from test suites guide automated verification

def symbtest_dup_success|() : _
pid is the id of the current process SymbO“C correctness

pid = state.current_proc test suite properties

process has a free file descriptor \
assumekExists (lambda x: fd valid(x) and "\
not fd_1in_use(state.procs([pid], X))
|Iiiiiiﬁiiii|iiiiil|
let fd be an arbitrary used file Runtime
descriptor in pid's open file table

fd = get_symbolic_var ("fd", int)
assume (fd >= 0 and fd < FD_ MAX)
assume (fd_1in_use (state.procs[pid], £d))

\ 4
res = syscall ("dup", pid, £fd)

e test coverage (lines, paths)
the syscall should not return an error ® falllng assertions (Concrete)
assert (res >= 0) e proof or counterexample for
each property

res should be a used file descriptor
assert (fd_in_use(state.procs[pid], res))

Higher coverage for the Proofs of safety and correctness

same testing effort without proof-writing effort

Want to work on something related? Talk to us!

