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A new algorithm without exploration assumption Controlling the regret terms: the reward player.

o Let us recall our goal

e-optimal policy w.r.t. the expert
A policy 7 is said e-optimal policy if o If the class R is a convex set, then we can simply use Online Gradient Ascent for the reward player. That is,
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o The caveat is that A™E — A™ can not be computed because the dynamics are unknown.
o We can play this trick for a sequence {rk}szl to be chosen later.
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o However, it is easy to obtain an unbiased bounded variance estimate.
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o If both sums grows sublinearly, the policy mout ~ Unif({vrk}fle) is e-optimal for K large enough.
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»—1 such that both sums grow sublinearly.

o Therefore, we aim at generating sequences {wk}le and {rF

An online learning view Controlling each term (Continued)

o We can interpret the two sums as two sources of regret.

Regret for the reward player
o We are left with controlling (Optimism 1) and (Optimism 2).
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T E <)‘7rE — A K Perug—T > o If the transition where known, we could make the terms zero by the following update rule
k=1
QFt1l(s,a) = r*(s,a) + yPV*(s,a)
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{r®}_, is the sequence of decision produced by the no-regret algorithm used to update the reward. = #K(s, a) + P~ QF (s, a).

> {ATE — ATk }X s the sequence of (negated ) loss vectors.

> rirue is the comparator. o That is applying the Bellman evaluation operator of the policy 7% on Q.
Regret for the policy player o Unfortunately, this can not be done because we do not know the transition dynamics, i.e. the matrix P.
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1 Z <)‘,rE ATk rk> o We circumvent the problem finding an estimator-uncertainty pair (6%, b*) such that
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> {7k }i{zl is the sequence of occupancy meaures of the policies {ﬁk}le. with high probability.
» The sequence {wk}le is interpreted as the sequence of decisions of the algorithm.
> {rk}fc{zl is the sequence of (negated) loss vectors.
» ATE acts as comparator, i.e. the occupancy measure of the expert policy.

Controlling the regret terms: the polic layer
e & POy Controlling each term (Continued)

o We develop a way to bound this term without exploration assumptions.
K
o For any sequence {Q% : S x A — R} | and {V*¥:S — R such that V¥(s) = {<7r(-|s),Qk(s, .)>}k_1 is

X o We use the estimator-uncertainty uncertaint air to approximate the update
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E s,a~d™E ’ Y ) ’ P o In the paper, we show how to design uncertainties {b"’}{f_l such that
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Take Aways for Deep Imitation Learning.

o The improved result follows using policies in the form
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where Q% (s,a) is an upper bound on r*(s,a) + yPV% (s, a).

» Going beyond linear functions, we can instantiate a neural network f : S X A — R trying to predict
' ik ” y®(s,a) = r*(s,a) + yPV*(s,a).
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| . » Moreover, we can try heuristics to estimate the confidence interval width A(s, a) of the neural network
MDP traiectories prediction f(s,a).
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» Therefore, we can use updates
i1 (als) o< m (als)ef(s:a)+A(s,a))
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Figure: Experiments on a continuous gridworld with a stochastic expert.The y-axis reports the normalized return. 1 correpsonds » If the environmnet has continuous actions, these updates can be approximated via Soft Actor Critic
to the expert performance and 0 to the uniform policy one. [Haarnoja et al. 2018].

o This experiment shows that ILARL otperforms previous methods.

Controlling each term The new algorithm: ILARL

o (OMD) is sublinear in K if we update the policies via a no-regret algorithm. o We call the resulting algorithm ILARL: Imitation Learning via Adversarial Reinforcement Learning.

o For example, we can use online mirror ascent with entropy as regularizer, i.e. Imitation Learning via Adversarial Reinforcement Learning: ILARL

Tr+1(als) o< g (als)e”Qk(S’a) 1: Initialize o as uniform distribution over A
2. fork=1,... K do
o (Shift 2) simply telescopes. 3: // Reward players update
k
o (Shift 1) is small because the sequence of policies {m}}* | is slowly changing, i.e. rktl =TI [rk + Y(ATE — AT )]
max ||7Tg4+1(|s) — m(-[s)]l; < O(n) 4: // Policy players update
26 5:  Find an estimator-uncertainty pair (6%, b*) such that
o With this observation, we have that T % %
~ |¢(s,a,) ok — PV (s,a)l < b*(s, a) Vs,a € S x A with high probability.
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K 7:  Update policy
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k=1 8: end for



