

Imitation Learning without exploration assumptions

Luca Viano, Stratis Skoulakis and Volkan Cevher

A new algorithm without exploration assumption

Let us recall our goal

ϵ -optimal policy w.r.t. the expert

A policy π is said ϵ -optimal policy if

$$rac{1}{1-\gamma}\left\langle \lambda^{\pi_{\mathsf{E}}}, r_{\mathsf{true}} \right
angle - rac{1}{1-\gamma}\left\langle \lambda^{\pi}, r_{\mathsf{true}}
ight
angle \leq \epsilon$$

 \circ We can play this trick for a sequence $\{r^k\}_{k=1}^K$ to be chosen later.

$$\frac{1}{1-\gamma} \sum_{k=1}^{K} \left\langle \lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi_{k}}, r_{\mathsf{true}} \right\rangle = \frac{1}{1-\gamma} \sum_{k=1}^{K} \left\langle \lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi_{k}}, r_{\mathsf{true}} - r^{k} \right\rangle + \frac{1}{1-\gamma} \sum_{k=1}^{K} \left\langle \lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi_{k}}, r^{k} \right\rangle$$

- \circ If both sums grows sublinearly, the policy $\pi_{\mathrm{out}} \sim \mathrm{Unif}(\{\pi_k\}_{k=1}^K)$ is ϵ -optimal for K large enough.
- \circ Therefore, we aim at generating sequences $\{\pi_k\}_{k=1}^K$ and $\{r^k\}_{k=1}^K$ such that both sums grow sublinearly.

An online learning view

We can interpret the two sums as two sources of regret.

Regret for the reward player

$$rac{1}{1-\gamma} \sum_{k=1}^{K} \left\langle \lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi_k}, r_{\mathrm{true}} - r^k
ight
angle$$

- r^k r^k r^k is the sequence of decision produced by the no-regret algorithm used to update the reward.
- \blacktriangleright $\{\lambda^{\pi_{\mathsf{E}}} \lambda^{\pi_k}\}_{k=1}^K$ is the sequence of (negated) loss vectors.
- $ightharpoonup r_{
 m true}$ is the comparator.

Regret for the policy player

$$\frac{1}{1-\gamma} \sum_{k=1}^K \left\langle \lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi_k}, r^k \right\rangle$$

- $\{\lambda^{\pi_k}\}_{k=1}^K$ is the sequence of occupancy measures of the policies $\{\pi_k\}_{k=1}^K$.
- ▶ The sequence $\{\pi_k\}_{k=1}^K$ is interpreted as the sequence of decisions of the algorithm.
- $ightharpoonup \{r^k\}_{k=1}^K$ is the sequence of (negated) loss vectors.
- \triangleright λ^{π_E} acts as comparator, i.e. the occupancy measure of the expert policy.

Controlling the regret terms: the policy player

We develop a way to bound this term without exploration assumptions.

 \circ For any sequence $\{Q^k: \mathcal{S} imes \mathcal{A} o \mathbb{R}\}_{k=1}^K$ and $\{V^k: \mathcal{S} o \mathbb{R} \text{ such that } V^k(s) = \left\{\left\langle \pi(\cdot|s), Q^k(s,\cdot) \right\rangle \right\}_{k=1}^K$ is the following

$$\sum_{k=1}^{K} \left\langle \lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi_{k}}, r^{k} \right\rangle = \sum_{k=1}^{K} \mathbb{E}_{s \sim d^{\pi_{\mathsf{E}}}} \left[\left\langle Q^{k}(s, \cdot), \pi_{\mathsf{E}}(s) - \pi^{k}(s) \right\rangle \right]$$

$$+ \sum_{k=1}^{K} \mathbb{E}_{s, \alpha \in d^{\pi_{k}}} \left[Q^{k+1}(s, a) - r^{k}(s, a) - \gamma PV^{k}(s, a) \right]$$
(Optimism 1)

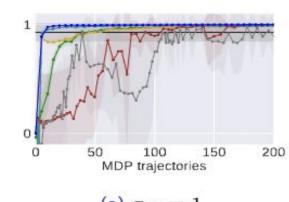
$$+\sum_{k=1}^{K}\mathbb{E}_{s,a\sim d^{\pi^k}}\left[Q^{k+1}(s,a)-r^k(s,a)-\gamma PV^k(s,a)\right] \tag{Optimism 1}$$

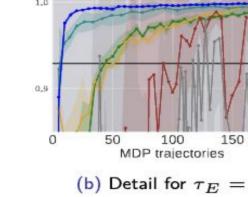
$$+\sum_{k=1}^{K}\mathbb{E}_{s,a\sim d^{\pi_{\mathsf{E}}}}\left[r^k(s,a)+\gamma PV^k(s,a)-Q^{k+1}(s,a)\right] \tag{Optimism 2}$$

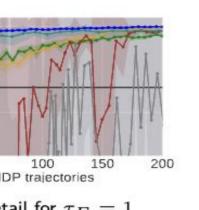
$$-\sum_{k=1}^K \mathbb{E}_{s,a\sim d^{\pi^k}}\left[Q^{k+1}(s,a)-Q^k(s,a)
ight]$$
 (Shift 1)

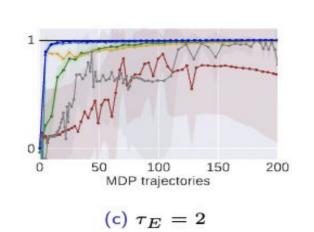
$$-\sum_{k=1}^K \mathbb{E}_{s,a\sim d^{\pi_{\mathsf{E}}}}\left[Q^k(s,a)-Q^{k+1}(s,a)\right] \tag{Shift 2}$$

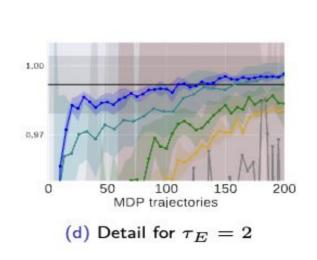
Results with linear function approximation











(a) $\tau_E = 1$ (b) Detail for $\tau_E = 1$

Figure: Experiments on a continuous gridworld with a stochastic expert. The y-axis reports the normalized return. 1 correpsonds

This experiment shows that ILARL otperforms previous methods.

to the expert performance and 0 to the uniform policy one.

Controlling each term

- \circ (OMD) is sublinear in K if we update the policies via a no-regret algorithm.
- o For example, we can use online mirror ascent with entropy as regularizer, i.e.

$$\pi_{k+1}(a|s) \propto \pi_k(a|s)e^{\eta Q^k(s,a)}$$

- (Shift 2) simply telescopes.
- \circ (Shift 1) is small because the sequence of policies $\{\pi_k\}_{k=1}^K$ is slowly changing, i.e.

$$\max_{s \in S} \left\| \pi_{k+1}(\cdot|s) - \pi_k(\cdot|s) \right\|_1 \le \mathcal{O}(\eta)$$

With this observation, we have that

$$\sum_{k=1}^K \left\langle \lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi_k}, r^k \right\rangle = o(K) + \sum_{k=1}^K \mathbb{E}_{s, a \sim d^{\pi^k}} \left[Q^{k+1}(s, a) - r^k(s, a) - \gamma PV^k(s, a) \right] \tag{Optimism 1}$$

$$+\sum_{k=1}^K \mathbb{E}_{s,a\sim d^{\pi_{\mathsf{E}}}}\left[r^k(s,a)+\gamma PV^k(s,a)-Q^{k+1}(s,a)
ight]$$
 (Optimism 2)

Controlling the regret terms: the reward player.

 \circ If the class $\mathcal R$ is a convex set, then we can simply use Online Gradient Ascent for the reward player. That is,

$$r^{k+1} = \Pi_{\mathcal{R}} \left[r^k + \gamma (\lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi^k})
ight]$$

- \circ The caveat is that $\lambda^{\pi_{\mathsf{E}}} \lambda^{\pi^k}$ can not be computed because the dynamics are unknown.
- However, it is easy to obtain an unbiased bounded variance estimate.

Controlling each term (Continued)

- We are left with controlling (Optimism 1) and (Optimism 2).
- o If the transition where known, we could make the terms zero by the following update rule

$$Q^{k+1}(s, a) = r^k(s, a) + \gamma P V^k(s, a)$$
$$= r^k(s, a) + \gamma P^{\pi^k} Q^k(s, a).$$

- \circ That is applying the Bellman evaluation operator of the policy π^k on Q^k .
- \circ Unfortunately, this can not be done because we do not know the transition dynamics, i.e. the matrix P.
- \circ We circumvent the problem finding an estimator-uncertainty pair (θ^k,b^k) such that

$$\gamma \left| \phi(s, a)^T \theta^k - PV^k(s, a) \right| \le b^k(s, a) \qquad \forall s, a \in \mathcal{S} \times \mathcal{A}$$

with high probability.

Controlling each term (Continued)

o We use the estimator-uncertainty uncertainty pair to approximate the update

$$r^k(s,a) + \gamma PV^k(s,a)$$

$$Q^{k+1}(s, a) = r^{k}(s, a) + \gamma \phi(s, a)^{T} \theta^{k} + b^{k}(s, a).$$

It follows that with high probability,

- ightharpoonup (Optimism 2) ≤ 0
- $\text{Optimism 1)} \le 2 \sum_{k=1}^{K} \mathbb{E}_{s, a \sim d^{\pi^k}} \left[b^k(s, a) \right]$

 \circ In the paper, we show how to design uncertainties $\{b^k\}_{k=1}^K$ such that

$$2\sum_{k=1}^K \mathbb{E}_{s,a\sim d^{\pi^k}}\left[b^k(s,a)\right] = o(K)$$

without requiring exploration assumptions at all !

Take Aways for Deep Imitation Learning.

o The improved result follows using policies in the form

$$\pi_{k+1}(a|s) \propto \pi_k(a|s)e^{\eta Q^k(s,a)}$$

where $Q^k(s,a)$ is an upper bound on $r^k(s,a) + \gamma PV^k(s,a)$.

- Going beyond linear functions, we can instantiate a neural network $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ trying to predict $y^k(s,a) = r^k(s,a) + \gamma PV^k(s,a).$
- Moreover, we can try heuristics to estimate the confidence interval width $\Delta(s,a)$ of the neural network
- prediction f(s, a). ► Therefore, we can use updates

$$\pi_{k+1}(a|s) \propto \pi_k(a|s)e^{\eta(f(s,a)+\Delta(s,a))}$$

If the environment has continuous actions, these updates can be approximated via Soft Actor Critic [Haarnoja et al., 2018].

The new algorithm: ILARL

We call the resulting algorithm ILARL: Imitation Learning via Adversarial Reinforcement Learning.

Imitation Learning via Adversarial Reinforcement Learning: ILARL

- 1: Initialize π_0 as uniform distribution over $\mathcal A$
- 2: **for** k = 1, ... K **do**
- 3: // Reward players update

$$r^{k+1} = \Pi_{\mathcal{R}} \left[r^k + \gamma (\lambda^{\pi_{\mathsf{E}}} - \lambda^{\pi^k})
ight]$$

- // Policy players update Find an estimator-uncertainty pair (θ^k, b^k) such that

$$\gamma \left| \phi(s,a)^T \theta^k - PV^k(s,a) \right| \leq b^k(s,a) \qquad \forall s,a \in \mathcal{S} imes \mathcal{A} \quad ext{with high probability}.$$

6: Update Q values

$$Q^{k+1}(s, a) = r^k(s, a) + \gamma \phi(s, a)^T \theta^k + b^k(s, a)$$

7: Update policy

$$\pi_{k+1}(a|s) \propto \pi_k(a|s)e^{\eta Q^k(s,a)}$$

8: end for