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Abstract Problem and Solution Suggestion

Problem:

= Natural Language Processing (NLP) has become increasingly utilized to provide
adaptivity in educational applications.

= However, recent research has highlighted a variety of biases in pre-trained
language models.

Natural Language Processing (NLP) has become increasingly utilized to
provide adaptivity in educational applications. However, recent research
has highlighted a variety of biases in pre-trained language models. While
existing studies investigate bias in different domains, they are limited in
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language models (T5, BERT, and GPT-2) and GloVe embeddings, and (3)

spond to scores on the Likert 7-point scale.

the language models after fine-tuning on our collected data-set. In contrast five years.
to our initial expectations, we found that our collected corpus does not
reveal many biases in the co-occurrence analysis or in the GloVe .
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Overview of data collection from 2015 to 2019
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Table 1: Overview of our proposed measured bias categories (conceptual, race, and gender) for the WEAT analysis.
WEAT compares the association between two different target word lists (i.e. Math vs. Arts) to attribute word lists
(i.e. Male vs. Female terms). # indicates the original WEAT test number (Caliskan et al., 2017).

Bias # Targets Attributes Overall, only one test on the gender axis is able to uncover bias
1 | Flowers vs. Insects Pleasant vs. Unpleasant using traditional word embeddings (GloVe).
Conceptual | 2 | Instruments vs. Weapons Pleasant vs. Unpleasant
9 | Mental vs. Physical Disease Temporary vs. Permanent CONCEPTUAL BIAS RACIAL BIAS GENDER BIAS
- 1 2 9 3 4 5 6 7 8
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__________ Pre-trained German language models are inherently significantly biased, and fine-
tuning using language models uncovers different, significant bias. BERT is the
most susceptible to changes in bias of the three architectures.
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