Swiss National Control of In Research

Swiss National Centre of Competence in Research

Are Primary School Computer Science curricular reforms achieving equity goals? Impact on student learning

Laila El-Hamamsy^{1,2}, Barbara Bruno³, Catherine Audrin⁴, Morgane Chevalier⁴, Sunny Avry², Emilie-Charlotte Monnier², Jessica Dehler Zufferey², Francesco Mondada^{1,2}

¹ MOBOTS Group of the BIOROB Lab, Lausanne Switzerland
 ² LEARN, EPFL, Lausanne Switzerland
 ³ CHILI Lab, EPFL, Lausanne Switzerland
 ⁴ University of Teacher Education, Vaud, Switzerland

Students are progressing

Gender gaps appear to be closing

Early exposure to Computer Science (CS) & Computational Thinking (CT) is important

To broaden participation in the field & promote equity, two types of barriers need to be addressed (Wang & Hajazi Moghadam, 2017)

- **Structural barriers :** lack of access to Computer Science and Computational Thinking experiences
- Social barriers : often stereotype induced, arising despite equal access and similar socio-economic status
- \rightarrow Lead to under-representation in the field

→ Require a system-wide implementation of Computer Science and Computational Thinking curricula for all students starting early foundational years (Ottenbreit-Leftwich & Yadav, 2022; Bers et al., 2022)

Early CS & CT experiences can help address performance gaps

Grade 3 - Pre - Boys ~ Girls Grade 3 - Post - Boys > Girls Grade 4 - Pre - Boys ~ Girls Grade 4 - Post - Boys ~ Girls $\Delta = 0.764 pts$, p=0.0526, **D=0.161** $\Delta = 0.687 pts$, p=0.0422, **D=0.139** $\Delta = 0.727 pts$, p=0.0624, **D=0.151** $\Delta = 0.211 pts$, p=0.5046, **D=0.046**

Dataset: Grade 3-4 January 2021 & June 2021 test data, n=1319

Performance gaps are closing but there is no direct link with what was taught

Students with lower performance at the pre-test are progressing more

Hierarchical regression model for student learning (Delta, n=989) with significant variables in bold. $R^2 = 0.285$, RMSE=2.89, AIC=5132, BIC=5225, Log-Likelihood=-2547. Abbreviations : NCS=Number of CS activities taught.

	Estimate	Std.Error	Degrees of Freedom	t-value	p-value
(Intercept)	7.11	1.04	922	6.86	p<0.0001
Pre-test score	-0.379	0.0722	922	-5.25	p<0.0001
Gender (girls)	0.697	1.18	922	0.591	0.555
Grade (4)	1.15	1.55	45	0.741	0.462
NCS	0.122	0.275	45	0.442	0.661
Pre-test score:Gender (girls)	-0.0221	0.0906	922	-0.243	0.808
Pre-test score:Grade (4)	-0.0383	0.101	922	-0.377	0.706
Gender (girls):Grade (4)	-0.880	1.86	922	-0.474	0.636
Pre-test score:NCS	-0.00386	0.0198	922	-0.194	0.846
Gender (girls):NCS	-0.346	0.311	922	-1.11	0.267
Grade 4:NCS	-0.260	0.478	45	-0.544	0.589
Pre-test score:Gender (girls):Grade (4)	0.0308	0.131	922	0.235	0.814
Pre-test score:Gender (girls):NCS	0.0224	0.0255	922	0.876	0.381
Pre-test score:Grade (4):NCS	0.00979	0.0326	922	0.300	0.764
Gender (girls):Grade (4):NCS	0.195	0.562	922	0.347	0.729
Pre-test score:Gender (girls):Grade (4):NCS	-0.0129	0.0412	922	-0.313	0.755

Dataset: Grade 3-4 January 2021 & June 2021 test data & teacher adoption data , n=989

Unequal access to (high-quality) CS education contributes to performance gaps (Wang & Hajazi Moghadam, 2017; Bers et al., 2022) W.r.t

- **Socio-economic status :** Karpinski et. al (2021) found that students from "less advantaged backgrounds had lower levels of computer skills [...], especially in CT" (n=46'000 students)
- **Gender :** numerous studies have found that boys tend to perform better than girls (Román-González et al., 2017; Polat et al., 2021; Kong and Lai, 2022; El-Hamamsy et al., 2022), even in kindergarten (Sullivan & Bers, 2016)

But are curricular reforms contributing to learning and reducing performance gaps?

- Many initiatives are introducing CS & CT into formal K-12 education
- Curricular reforms and professional development programs are seldom evaluated at the student-level (Mason & Rich 2019; Kong & Lai 2022).
- The effectiveness of CS-curricular reforms in terms of student

Learning is unrelated to perception of CS

But it depends on teachers' perception of the professional development program

Hierarchical regression model for student learning with respect to student-, and teacher-level variables (Delta, n=1027 students in 57 classes in 6 schools). Significant variables are highlighted in b old. $R^2 = 0.279$, A IC=5386, BIC=5474, RMSE=3.04

learning and learning gaps must be established to
i) improve the proposed curricula and PD programs (Hickmott & Prieto-Rodriguez al. 2018)
ii) sustain the changes in teachers' practices

iii) alleviate concerns of funding agencies and government bodies (Hickmott & Prieto-Rodriguez al. 2018)

→ We evaluate the implementation of a regional CS-curricular reform with two student learning datasets involving 3383 grade 3-6 students from 7 schools through ANOVA and hierarchical regression

Variables		Estimate	Std.Error	Degrees of Freedom	t-value	p-value
	(Intercept)	10.48	2.579	968	4.06	0.0001
Student-level	Pre-test score	-0.35	0.023	968	-15.54	0.0000
	Gender (girl)	0.17	0.198	968	0.84	0.4021
	Grade (3)	0.35	0.823	39	0.42	0.6746
	Grade (4)	1.15	0.814	39	1.41	0.1663
Teacher-	CS-PD program evaluation	1.02	0.344	39	2.96	0.0053
perception	CS utility perception	0.15	0.628	39	0.24	0.8122
	CS non-utility perception	0.27	0.600	39	0.45	0.6561
	CS autonomous motivation	-0.21	0.380	39	-0.54	0.5896
Teacher	Age	-0.14	0.078	39	-1.83	0.0743
demographics	Experience with informatics	0.01	0.036	39	0.41	0.6828
	Teaching experience	0.11	0.079	39	1.42	0.1640
	Digital education teaching experience	-0.10	0.104	39	-0.94	0.3552
	Perceived ICT competence	-0.57	0.376	39	-1.53	0.1345
	Perceived relative ICT competence	0.20	0.421	39	0.47	0.6387

UNIVERSITÄT

BERN

SWISS NATIONAL SCIENCE FOUNDATION

The National Centres of Competences in Research are a research instrument of the Swiss National Science Foundation.