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© Neural networks are not  Fy o 3DCC has a diverse set of corruptions which: ©
robust when deployed in i | .
PlOY -] 1. can be used for benchmarking to test robustness
the real world. | _ |
- I o 2. or as data augmentation to improve robustness.
O ey are vulnerable to .
y L o They are extendable to datasets without 3D labels, e.g. ImageNet & COCO.
non-adversarial image o
corruptions. O They can also be generated efficiently. o
Frediclion fnormats Cl Input Far Focus Near Focus Occlusion Bit Error Color quantization o §
- - - eal I | U |IZall O
2. Realistic 3D Corruptions | . ' 2
o Common Corruptions [1] are 2D based (applied uniformly). | V| 0
Hence, they could be unrealistic.
o We incorporate scene geometry and real world properties to
generate 3D corruptions that are more realistic. Multi-illumination Flash
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5. Data Augmentation with 3D Common Corruptions
O Augmentlng tralnlng data W|th 3DCC S|gn|f|cantly Improves robustness

o 3DCC can also be applied to
standard datasets without 3D
iInformation.

o We introduce the ImageNet-3DCC
(how also in RobustBench [4]).
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O To do this, we used the depth
predictions from a SOTA depth
estimator [3].
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O This gives a good approximation
to generate realistic corruptions.
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6. Applving 3DCC to Standard Vision Datasets

ImageNet

Benchmarking with 3D Common Corruptions
3DCC provides a challenging testbed to identify model failures:
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