
[1]	Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P. and Hubaux, J.P., 2020. Multiparty homomorphic encryption from
ring-learning-with-errors, Proceedings on Privacy Enhancing Technologies, 2021, pp. 291–311

[2]	Mouchet, C., Bertrand, E. and Hubaux, J.P., 2022. An Efficient Threshold Access-Structure for RLWE-Based
Multiparty Homomorphic Encryption. Cryptology ePrint Archive, 2022/780.

[3]	Brakerski, Z., Gentry, C. and Vaikuntanathan, V., 2014. (Leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3), pp.1-36.

[4]	Fan, J., Vercauteren, F., 2012. Somewhat practical fully homomorphic encryption. Cryptology ePrint Arch., 2012/144.
[5]	Cheon, J.H., Kim, A., Kim, M. and Song, Y., 2017, Homomorphic encryption for arithmetic of approximate numbers.

In International conference on the theory and application of cryptology and information security pp. 409-437.
Springer, Cham.

[6]	Kim, D. and Song, Y., 2018, November. Approximate homomorphic encryption over the conjugate-invariant
ring. In International Conference on Information Security and Cryptology (pp. 85-102). Springer, Cham.

[7]	Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J. and Hubaux, J.P., 2021. Efficient bootstrapping for approximate
homomorphic encryption with non-sparse keys. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pp. 587-617. Springer, Cham.

[8]	Bossuat, J.P., Troncoso-Pastoriza, J. and Hubaux, J.P., 2022. Bootstrapping for approximate homomorphic
encryption with negligible failure-probability by using sparse-secret encapsulation. In International Conference
on Applied Cryptography and Network Security, pp. 521-541. Springer, Cham.

$ go get Lattigo !

Multiparty homomorphic encryption and the Lattigo library
Christian Mouchet1, Jean-Philippe Bossuat2, Juan R. Troncoso-Pastoriza2 and Jean-Pierre Hubaux1

1École polytechnique fédérale de Lausanne 2Tune Insight SA.

The Lattigo library
	✓100% written in Go, as fast as C++

	✓Cross-platform (Linux, Darwin, Windows, WASM, ...)
	✓Easy builds and dependency management	

	✓Standalone optimized ring arithmetic layer
	✓Generic RLWE layer
	✓Complete HE scheme layer

	✓Encrypted integer-arithmetic (BGV [3])
	✓Encrypted scale-invariant integer-arithmetic (BFV [4])
	✓Encrypted complex/float arithmetic (CKKS [5,6])
	✓Parameterizable CKKS bootstrapping [7,8]
	✓Homomorphic evaluation of lookup tables

	✓Multiparty extensions layer
	✓Multiparty BFV, BGV and CKKS
	✓N-out-of-N-threshold [1]
	✓ t-out-of-N-threshold [2]

lattigo/bfv & bgv

•	 Encrypted integer arithmetic

•	 Encoding, encryption

•	 Homomorphic operations

•	 Linear-transformations evaluation

•	 Polynomial evaluation

lattigo/drlwe

•	 Collective encryption-key generation

•	 Collective evaluation keys generation

•	 Generic collective key-switching

•	 N-out-of-N-threshold encryption [1]

•	 T-out-of-N-threshold encryption [2]

lattigo/dckks

•	 Collective key-switching
•	 Collective refresh
•	 Collective masked-transform

lattigo/dbfv & dbgv

•	 Collective key-switching
•	 Collective refresh
•	 Collective masked-transform

lattigo/rlwe
•	 Full-RNS operations
•	 Generic RLWE key-generation
•	 Generic RLWE encryption & decryption

•	 Generic RLWE gadget decomp. & key-switching
•	 Generic RLWE relinearization
•	 Generic RLWE automorphisms

•	 Standard- <-> conjugate-Invariant-ring bridge
•	 Ring degree switching
•	 Coefficient extraction and repacking

lattigo/ckks
•	 Encrypted complex/real arithmetic
•	 Encoding, encryption
•	 Homomorphic operations
•	 Linear-transform evaluation
•	 Polynomial evaluation

ckks/bootstrapping

CKKS Bootstrappping for dense and
sparse secret-keys [7,8]

lattigo/ring

•	 Power-of-2 cyclotomic-polynomial ring with RNS coefficient-modulus
•	 Standard and conjugate-invariant NTTs
•	 RNS basis extension (mod-up)

•	 RNS division (mod-down & rescaling)
•	 Efficient Montgomery representation
•	 Sampling from uniform, Gaussian and ternary distributions

lattigo/rgsw
•	 Encryption
•	 Ciphertext
•	 External product

rgsw/lut

•	 Blind rotations
•	 Lookup table generation
•	 Lookup table evaluation

Multiparty layer

Scheme layer

RLWE layer

Ring layer

Layered architecture

Multiparty homomorphic encryption

	✓ One-time ”offline” phase
	✓ 1-2 round(s)
	✓ Public aggregatable transcript

	✓ Ciphertext-only transcript
	✓ Outsourcable circuit evaluation
	✓ Single round (with bootstrapping)

	✓ Decryption or re-encryption
	✓ Single round
	✓ Public aggregatable transcript

	✓ Public transcript protocols with low communication complexity
	✓ Scales linearly with the number of parties
	✓ MPC for light clients through outsourcing/delegation

•	Multiparty Homomorphic Encryption (MHE [1,2]) techniques extend
traditionnal HE to support N-party MPC.

•	These schemes enable encryption of messages in such a way that
(1) decryption requires the collaboration between the parties and
(2) that homomorphic computation are still possible.

•	Hence, the parties can use the MHE scheme to encrypt their inputs
to the MPC, compute the joint function under encryption and then
collectively decrypt the result.

•	MHE-based MPC have several advantages over other techniques:
	✓The have low communication complexity.
	✓They directly benefit from the research in making HE efficient.
	✓They are compatible with the paradigms of cloud computing
such as thin-clients delegating heavy computation to honest-but-
curious service providers.

Homomorphic encryption

•	Homomorphic Encryption (HE) enables computation to be performed over en-
crypted data, without requiring decryption. This enables private-data processing
by untrusted entities and has important applications for outsourced architectures.

•	In the last decade, the overhead of HE (w.r.t. plaintext computation) has been
reduced from six down to three orders of magnitude. Incoming hardware accel-
erators are expected to further close this gap in the next few years.

•	HE provides a direct solution to the MPC problem for two parties.

The secure multiparty computation problem

•	In the secure multiparty computation (MPC) problem, a group of par-
ties seeks to compute a joint function over their private inputs, without
revealing more than the final result.

•	The MPC problem is general and can model a broad range of applica-
tion from privacy-preserving statistics to secure federated learning.

•	There exists several cryptographic protocols realizing MPC under a
variety of models. But they often come with high performance costs.

