
[1] Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P. and Hubaux, J.P., 2020. Multiparty homomorphic encryption from 
ring-learning-with-errors, Proceedings on Privacy Enhancing Technologies, 2021, pp. 291–311

[2] Mouchet, C., Bertrand, E. and Hubaux, J.P., 2022. An Efficient Threshold Access-Structure for RLWE-Based 
Multiparty Homomorphic Encryption. Cryptology ePrint Archive, 2022/780.

[3] Brakerski, Z., Gentry, C. and Vaikuntanathan, V., 2014. (Leveled) fully homomorphic encryption without 
bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3), pp.1-36.

[4] Fan, J., Vercauteren, F., 2012. Somewhat practical fully homomorphic encryption. Cryptology ePrint Arch., 2012/144.
[5] Cheon, J.H., Kim, A., Kim, M. and Song, Y., 2017, Homomorphic encryption for arithmetic of approximate numbers. 

In International conference on the theory and application of cryptology and information security pp. 409-437. 
Springer, Cham.

[6] Kim, D. and Song, Y., 2018, November. Approximate homomorphic encryption over the conjugate-invariant 
ring. In International Conference on Information Security and Cryptology (pp. 85-102). Springer, Cham.

[7] Bossuat, J.P., Mouchet, C., Troncoso-Pastoriza, J. and Hubaux, J.P., 2021. Efficient bootstrapping for approximate 
homomorphic encryption with non-sparse keys. In Annual International Conference on the Theory and Applications 
of Cryptographic Techniques, pp. 587-617. Springer, Cham.

[8] Bossuat, J.P., Troncoso-Pastoriza, J. and Hubaux, J.P., 2022. Bootstrapping for approximate homomorphic 
encryption with negligible failure-probability by using sparse-secret encapsulation. In International Conference 
on Applied Cryptography and Network Security, pp. 521-541. Springer, Cham.

$ go get Lattigo !

Multiparty homomorphic encryption and the Lattigo library
Christian Mouchet1, Jean-Philippe Bossuat2, Juan R. Troncoso-Pastoriza2  and Jean-Pierre Hubaux1

1École polytechnique fédérale de Lausanne    2Tune Insight SA.   

The Lattigo library                                             
 ✓100% written in Go, as fast as C++

 ✓Cross-platform (Linux, Darwin, Windows, WASM, ...)
 ✓Easy builds and dependency management 

 ✓Standalone optimized ring arithmetic layer
 ✓Generic RLWE layer
 ✓Complete HE scheme layer 

 ✓Encrypted integer-arithmetic (BGV [3])
 ✓Encrypted scale-invariant integer-arithmetic (BFV [4])
 ✓Encrypted complex/float arithmetic (CKKS [5,6]) 
 ✓Parameterizable CKKS bootstrapping [7,8]
 ✓Homomorphic evaluation of lookup tables

 ✓Multiparty extensions layer 
 ✓Multiparty BFV, BGV and CKKS
 ✓N-out-of-N-threshold [1]
 ✓ t-out-of-N-threshold [2]

lattigo/bfv & bgv

• Encrypted integer arithmetic

• Encoding, encryption

• Homomorphic operations

• Linear-transformations evaluation

• Polynomial evaluation

lattigo/drlwe

• Collective encryption-key generation

• Collective evaluation keys generation

• Generic collective key-switching

• N-out-of-N-threshold encryption [1]

• T-out-of-N-threshold encryption [2]

lattigo/dckks

• Collective key-switching
• Collective refresh
• Collective masked-transform

lattigo/dbfv & dbgv

• Collective key-switching
• Collective refresh
• Collective masked-transform

lattigo/rlwe
• Full-RNS operations
• Generic RLWE key-generation
• Generic RLWE encryption & decryption

• Generic RLWE gadget decomp. & key-switching
• Generic RLWE relinearization
• Generic RLWE automorphisms

• Standard- <-> conjugate-Invariant-ring bridge
• Ring degree switching
• Coefficient extraction and repacking

lattigo/ckks
• Encrypted complex/real arithmetic
• Encoding, encryption
• Homomorphic operations
• Linear-transform evaluation
• Polynomial evaluation

ckks/bootstrapping

CKKS Bootstrappping for dense and 
sparse secret-keys [7,8]

lattigo/ring

• Power-of-2 cyclotomic-polynomial ring with RNS coefficient-modulus  
• Standard and conjugate-invariant NTTs 
• RNS basis extension (mod-up)

• RNS division (mod-down & rescaling)
• Efficient Montgomery representation
• Sampling from uniform, Gaussian and ternary distributions

lattigo/rgsw
• Encryption 
• Ciphertext
• External product 

rgsw/lut

• Blind rotations
• Lookup table generation
• Lookup table evaluation

Multiparty layer

Scheme layer

RLWE layer

Ring layer

Layered architecture

Multiparty homomorphic encryption                                             

 ✓ One-time ”offline” phase
 ✓ 1-2 round(s)
 ✓ Public aggregatable transcript

 ✓ Ciphertext-only transcript
 ✓ Outsourcable circuit evaluation
 ✓ Single round (with bootstrapping)

 ✓ Decryption or re-encryption
 ✓ Single round
 ✓ Public aggregatable transcript

 ✓ Public transcript protocols with low communication complexity
 ✓ Scales linearly with the number of parties 
 ✓ MPC for light clients through outsourcing/delegation

• Multiparty Homomorphic Encryption (MHE [1,2]) techniques  extend 
traditionnal HE to support N-party MPC. 

• These schemes enable encryption of messages in such a way that 
(1) decryption requires the collaboration between the parties and   
(2) that homomorphic computation are still possible.

• Hence, the parties can use the MHE scheme to encrypt their inputs 
to the MPC, compute the joint function under encryption and then 
collectively decrypt the result.

• MHE-based MPC have several advantages over other techniques:
 ✓The have low communication complexity.
 ✓They directly benefit from the research in making HE efficient. 
 ✓They are compatible with the paradigms of cloud computing 
such as thin-clients delegating heavy computation to honest-but-
curious service providers.

Homomorphic encryption   

• Homomorphic Encryption (HE) enables computation to be performed over en-
crypted data, without requiring decryption. This enables private-data processing 
by untrusted entities and has important applications for outsourced architectures.

• In the last decade, the overhead of HE (w.r.t. plaintext computation) has been 
reduced from six down to three orders of magnitude. Incoming hardware accel-
erators are expected to further close this gap in the next few years.

• HE provides a direct solution to the MPC problem for two parties.

The secure multiparty computation problem

• In the secure multiparty computation (MPC) problem, a group of par-
ties seeks to compute a joint function over their private inputs, without 
revealing more than the final result.

• The MPC problem is general and can model a broad range of applica-
tion from privacy-preserving statistics to secure federated learning.

• There exists several cryptographic protocols realizing MPC under a 
variety of models. But they often come with high performance costs.


