
Evaluation Highlights:

Ø Extracted interfaces for 12 Network Functions, 12 programs from OpenSSL
Ø 3 Network Functions used in production: Meta, Scaleway, Cilium

Ø Extracted interfaces are simple, precise and quick to extract
Ø 100-1000x shorter than implementations
Ø Average prediction error < 10% across multiple deployments
Ø Take < 25 mins to extract even for production NFs

Ø PIX-extracted interfaces are useful to developers & operators!

Ø Developers: automatically find performance bugs/regressions:
Ø Found 15% latency in Meta’s load balancer
Ø Found constant-time violation in OpenSSL 3.0

Ø Operators: Informed development decisions
Ø Pick right Network Function for deployment hardware (NIC)
Ø Diagnose root-cause of in-production performance anomalies

Performance Interfaces for Systems Code

Rishabh Iyer Katerina Argyraki George Candea

Semantic interfaces abstract functionality & are indispensable when building complex systems
There exists no equivalent, widely-used construct that abstracts performance behavior

Three key ideas;

Ø Interface as a program with same inputs that returns latency
Ø Systems engineers are intuitively familiar with programs

Ø General-case (GC) vs Deployment-specific (DS) interface
Ø GC interface represents the code, parameterizes environment
Ø DS interface is an instantiation of the GC interface for an environment

Ø Performance resolution: Granularity at which interface describes latency
Ø Provides users with explicit control of the simplicity-precision tradeoff

Performance interfaces summarize the latency of a system simply and precisely,
just like semantic interfaces summarize functionality

Ø Reveal only the information that a user of the system requires
Ø All other implementation details are abstracted away

Ø Examples: Header files, code documentation, formal specifications
Ø Hard to imagine building systems without them

Semantic interfaces summarize functionality simply & precisely

Solution: Performance Interfaces as programs that summarize the latency of the system

PIX: Program Analysis tool that automatically extracts Performance Interfaces from source code

Ø Summarizing performance is hard!
Ø Performance depends on low-level implementation details
Ø Must take into account different hardware platforms

Ø Existing approaches to summarizing performance are insufficient
Ø Big-Oh notation: Only talks about asymptotic scalability
Ø Worst-Case-Execution Time: Only focused on absolute worst case
Ø Service Level Objectives: Only focused on tail behavior

Can there exist a performance interface?

Key insight: Reason about the system separately from the environment it runs in

1

2

3

Two kinds of interfaces tailored to the requirements of developers (system) and operators (environment) respectively

NAL

Problem:

connect
public void connect(SocketAddress endpoint) throws IOException

Connects this socket to the server

Parameters:
endpoint - the SocketAddress

Throws:
IOException - if an error occurs during the connection
IllegalBlockingModeException - if this socket has an associated
channel and the channel is in non-blocking mode

Existing performance summaries sacrifice precision for simplicity

General Case Deployment Specific

def perf_connect(endpoint):

.....

.....
return a*x + b

def perf_connect(endpoint):

.....

.....
return 42

Performance Resolution

1

2

3

