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Metastable Failures : “Have you tried turning it off and on again”

B \What is a Metastable Failure?

* Example: Retry Storm
A crash-free, stable down state

Trigger:
Background
interference

l Retry starts

/

Capacity = 600 RPS

RPS
Load = 1,400 RPS

Characterised by a permanent reduction in
goodput of the system

1 Permanent overload

Capacity = 1,000 RPS

\ Trigger removed:
Capacity recovered

Load = 700 RPS

Root cause Is often a common-case
optimisation for efficiency or reliability

Time
Cause catastrophic outages (4/15 major AWS
outages in last decade)

Takeaway: Permanent overload even after the trigger is removed

What is Metastability?

B Salient Features

Vulnerable

Triggered by an uncontrolled source of load (overloading trigger) when the
system Is running at peak capacity

Overloading

Stable Trigger

A sustaining effect keeps the system overloaded even after the trigger is
removed

!

. Sustaining
Metastable Failure Effect

System usually cannot recover without load-shedding or restarts

Building Distributed Systems that do not exhibit Metastability

B Exploring config space for Bugs (S N ) ) e
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F: Check if reported trigger is a false

alarm

G: Valid trigger found; system exhibits

metastability for that configuration

F—C: False alarm, retry SymbEXx
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the System
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System does not exhibit Metastability
over configuration space in N time
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Want to evolve automated verification techniques to reason about

the behaviour of hyperscale software? Talk to us!




