Detecting Presence of Metastable Failure States in Distributed

Systems

RS3LAB EPFL

Yugesh Kothari, Pin-Yen Huang, Sanidhya Kashyap

Metastable Failures : “Have you tried turning it off and on again”

B \What is a Metastable Failure?

* Example: Retry Storm
A crash-free, stable down state

Trigger:
Background
interference

l Retry starts

/

Capacity = 600 RPS

RPS
Load = 1,400 RPS

Characterised by a permanent reduction in
goodput of the system

1 Permanent overload

Capacity = 1,000 RPS

\ Trigger removed:
Capacity recovered

Load = 700 RPS

Root cause Is often a common-case
optimisation for efficiency or reliability

Time
Cause catastrophic outages (4/15 major AWS
outages in last decade)

Takeaway: Permanent overload even after the trigger is removed

What is Metastability?

B Salient Features

Vulnerable

Triggered by an uncontrolled source of load (overloading trigger) when the
system Is running at peak capacity

Overloading

Stable Trigger

A sustaining effect keeps the system overloaded even after the trigger is
removed

!

. Sustaining
Metastable Failure Effect

System usually cannot recover without load-shedding or restarts

Building Distributed Systems that do not exhibit Metastability

B Exploring config space for Bugs (S N)) e
A: Throughput description for each / summary of Setup the system
LT TN the System with config
individual component A\ N R, and apply the
,’ _’/I ::::::::: trigger found
B: Summary of system goodput based
summary.c

on interactions and config

J
C: Simulator loop applies a symbolic embae:
overloading trigger over symbolic config Apply Symbolic
. trigger Detect a Metastable Failure
D: No metastability detected ,
E: Potential trigger found ¢ 7 N o st @/ .
y

F: Check if reported trigger is a false

alarm

G: Valid trigger found; system exhibits

metastability for that configuration

F—C: False alarm, retry SymbEXx

\driver.c2

KLEE

Summary of
the System

summary.c

J

System does not exhibit Metastability
over configuration space in N time

steps

Want to evolve automated verification techniques to reason about

the behaviour of hyperscale software? Talk to us!

