

Accuracy Booster

Simla Burcu Harma, Ayan Chakraborty, Babak Falsafi, Martin Jaggi, Yunho Oh EcoCloud, EPFL

Moore's Law is dying

Hybrid Block Floating Point

High accuracy of floating point and the superior hardware density of fixed point

Block of Mantissas

How to make DNN training denser?

Training traditionally uses power-inefficient floating-point arithmetic for accuracy. HBFP brings fixed-point efficiency to training.

Goal: Training DNNs using 4-bit fixed-point arithmetic with FP32 accuracy

Fixed-point dot product

Prior work only studied HBFP's design space for power-of-two mantissa bitwidths (e.g., 2, 4, 8-bits)

The parameter space of HBFP is yet to be explored!

Mixed-Mantissa HBFP: Accuracy Booster

- A key advantage of BFP is fixed exponent
- We can keep the exponent and vary the mantissa bits
- Epochs have varying precision requirements

First/last layers: HBFP6

HBFP4 training

Last epoch

HBFP6

HBFP Parameter Space

- Optimizing block size
 → Study the tensor
 distribution similarities
- Minimizing mantissa bits
 Analyze loss landscapes

Parameters impact both model accuracy and accelerator density

- First/last layers of DNN models have a large impact on accuracy
- Accuracy Booster: HBFP6 only in the last epoch and first/last layers,
 HBFP4 for the rest

Hardware benefits of HBFP4 while maintaining FP32 accuracies

Tensor Distributions: Wasserstein Distance

🔤 layer1.2.conv2.weight 🛛 fc.weight

- Tensor distributions are much more distorted for HBFP4 compared to HBFP6
- HBFP6 is not sensitive to the block size, while HBFP4 is sensitive
- Wasserstein distances of first/last layers are higher than the other layers

Wasserstein Distance is a viable metric to measure similarity btw. tensors

Accuracy Booster: Experimental Results

Use HBFP4 for >99% of the operations; use HBFP6 only for the first/last layers and last epoch.

FP32 accuracy with up to **23 times more area efficient** hardware.

Analyzing the Loss Landscapes

- Plot the landscape around the current position of the minimizer
- Dimensionality reduction by random directions with filter normalization

Loss landscapes provides information for the interplay between generalization & optimization!

FP32 level accuracy with 23x higher density

https://parsa.epfl.ch/coltrain/