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Differentiable 3D Mesh Parameterization with Neural Networks
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Mesh Representation for Aerodynamic Applications

~— Challenges in aerodynamic applications—

* Creating computational meshes quickly, with
high quality for simulation.

* Automating & eliminating heavy handcrafts.
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Application #1: Encode airfoils and create
Computational Fluid Dynamics (CFD) meshes
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Leveraging Geometric Primitives
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Implicit: DeepSDF [2]

Primitives: HierSQ [3]
nybridSDF [1]: Combination of Bothﬂ

~Improving Local Quality and Realism —,
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