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DMAP: a policy architecture for adaptive

locomotion

DMAP processes past sensory information to develop a representation of the current
state of the body. In this way, it can learn to control agents with variable body shapes.

A DMAP - Distributed Morphological Attention Policy
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A connectivity map between sensor and actuators emerges thanks to the attention

mechanism.
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time and untangles the high-dimensional sensory input.

Chiappa, A., Marin Vargas, A., and Mathis, A. “DMAP: a Distributed Morphological Attention Policy for

learning to locomote with a changing body”. NeurlPS, 2022.
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Modeling Proprioception with neural

network models

We trained neural network models to solve proprioceptive computational tasks and we
use the learned representation to predict neural activity to gain insights about how the
brain perceives our body pose and movements.

Marin Vargas* A., Bisi* A., Chiappa, A. S., Versteeg, C., Miller, L. E., & Mathis, A. “Task-driven neural network models

predict neural dynamics of proprioception”. Cell, 2024.
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RESEARCH QUESTIONS

What are the principles of proprioception?

What are the neural mechanisms
underlying robust motor control?

How does the brain integrate sensory
Inputs to execute movements?

How does expert behavior emerge?

Latent exploration for
reinforcement learning (Lattice)

Lattice is an exploration method which helps learning complex skills in complex
environments through reinforcement learning. It uses the correlation across actuators
learnt by the policy to give a structure to the exploration noise.

This is achieved by perturbing the latent state of the policy network.

A LATTICE - LATent TiIme-Correlated Exploration
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Chiappa, A., Marin Vargas, A., Huang, A. Z., and Mathis, A. “Latent exploration for )| B ek O

reinforcement learning”. NeurlPS, 2023.

We used LATTICE to win the 2023 MyoChallenge.
Check out our solution!

Selected collaborators:

Mackenzie Mathis, EPFL

Michael Dimitriou, Umea University

Lee E. Miller, Northwestern University
Alexander Pouget, University of Geneva

We develop normative theories of neural systems that are
trained to perform sensorimotor behaviors as well as task-driven
models.

Skill learning and modeling sensorimotor circuits

Join us and Mackenzie
Mathis' lab in Geneval

Modeling muscle spindles with Physics-
Informed Neural Networks (PINNSs)

Muscle spindles convey information about the
body position and movement to the central

nervous system.

By leveraging the power of PINNs we propose a
model of muscle spindles that merges structural
fidelity with computational efficiency.

A model that integrates principles of biomechanics and neural dynamics
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Acquiring musculoskeletal
skills with curriculum-based
reinforcement learning

D States of a dynamic skill: the backflip

A. Perez Rotondo, M. Dimitriou, A., Mathis, A. “Modeling Sensorimotor Processing with
Physics-Informed Neural Networks.” (In preparation)
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Combining reinforcement and curriculum learning, we managed to win the NeurlPS
MyoChallenge both in 2022 and 2023. Curriculum learning, similarly to coaching
techniques used to train athletes, introduces progressively more complex task which
facilitate the acquisition of sophisticated sKills.
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Performance
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SDS (ours) 100% 55%

O H Challenge leaderboard
. O
> Performance
@) 3 Rank Phase 1 | Phase 2
| O 1 (ours) 100% 55%
A . ° o
g @ ; -
v ® 3 48% 15%
Q A - ; 4 2% 9
2 62% 14%
: ’ 5 12% 3%
I Static Dynamic Phase shift Fine tuning
— > <> <> —
Training Time [hours]
0 100 200 300 400
©
§ 10001 o o I
g
2 500 - - [ f r
a
.a [
- 0 - T | T = T : :
0 50 100 150 200 250 300

Millions of steps

Chiappa* A., Tano* P., Patel* N, Pouget, A., Mathis, A. "Acquiring musculoskeletal skills with curriculum-based

reinforcement learning”. BiorXiv, 2023.
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