Motivation

How can we diagnose strengths and weaknesses of transformer-based language models beyond traditional accuracy metrics?

We extract snapshots of acquired knowledge at sequential stages of the training process.

Linguistic Metrics

Part-of-Speech Overprediction Rate

$$\text{POSOR}(\text{pos}) = \frac{(LM_{\text{pos}} - GLM_{\text{pos}}) \cdot 100}{GLM_{\text{pos}}}$$

POSOR allows us to identify part-of-speech deficiencies of our language models. This metric is framed within the context of probing task literature.

Probing Tasks

- wh-words
- prepositions
- coordinate conjunctions
- negation
- coordination
- EOS
- spatial

Knowledge Graph Metrics

Graph-Edit-Distance

$$GED(g_1, g_2) = \min_{(e_1, \ldots, e_k) \in \mathcal{E}(g_1, g_2)} \sum_{i=1}^{k} c(e_i)$$

These metrics are inspired from graph literature to quantitatively compare KG extracts.

Knowledge Graph Results

<table>
<thead>
<tr>
<th>Target Model (distance from RoBERTa)</th>
<th>Graph-Edit-Distance on the extracted knowledge graph</th>
<th>Euclidean distance on the graph2vec embeddings</th>
</tr>
</thead>
<tbody>
<tr>
<td>RoBERTa 1e</td>
<td>141.25</td>
<td>0.2260</td>
</tr>
<tr>
<td>RoBERTa 3e</td>
<td>135.00</td>
<td>0.1733</td>
</tr>
<tr>
<td>RoBERTa 5e</td>
<td>130.50</td>
<td>0.1607</td>
</tr>
<tr>
<td>RoBERTa 7e</td>
<td>121.50</td>
<td>0.1605</td>
</tr>
<tr>
<td>DistilBERT</td>
<td>28.50</td>
<td>0.0284</td>
</tr>
<tr>
<td>BERT</td>
<td>16.50</td>
<td>0.0202</td>
</tr>
</tbody>
</table>

Across both quantitative graph metrics, we see the distance from each model to pretrained RoBERTa reduce as the number of epochs and the amount of training data increase.

Research Questions

1. Quantitatively compare knowledge acquisition across language models
2. Analyze the same model at different stages over time (early training)
3. Compare knowledge graphs linguistically

Datasets

- SQuAD
- Google-RE

Datasets are inspired from Facebook’s LAMA paper