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Low-rank Tied Dot-Product Attention We use sentences of uncorrelated (1-gram) words as 𝑥 ∈ ℝ!×# with 𝐿 tokens
𝑥$ $%&…!independently drawn from a Gaussian distribution 𝑥$ ∼ 𝑁(0, Σ$) with covariance Σ$ ∈ ℝ#×#, and n data 

samples. The goal is to learn the target using the student, by optimizing the empirical risk:

Posi5onal & Seman5c Learning To understand a sentence we use 
both two types of informaCon.
The meaning of the tokens (semanCcs) …
We sani(ze a face ambi(on between ra(onal and acrylic baking

… and their ordering (posiCons)
A between a phase seman(c learning and posi(onal analyze transi(on 

Example: Histogram Task* For each input token count the  number 
of idenCcal tokens in the input sequence. 

We train a 1-layer transformer 
and find two minima of the loss:

A phase transition between positional & semantic learning 
in a solvable model of dot-product attention

Hugo Cui
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Motivation Why and how do algorithmic abilities emerge in learned 
neural networks? How does the network understand the semantics 
of the inputs? Is this emergence a fast but smooth change of 
performance or a sharp boundary between different regimes of 
learning?

Phase Transi>on in Physics: Proper>es of a system of 
many interac>ng par>cles change apruptly as you 
change environmental parameters.

“Emergence” in ML: Capabili>es/solu>on strategies of
the learned algorithm change abruptly as more
parameters/samples are available.
   

🌊 →🧊
🌡

🤖→🧠📚

Input       -> Output
[B,A,A,D,E] -> [1,2,2,1,1]
[A,C,C,A,A] -> [3,2,2,3,3]
[C,C,C,C,D] -> [4,4,4,4,1]
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Main Technical Result Our result holds for teacher T and student S functions in the infinite sample and parameter limit where the sample 
complexity 𝛼 = !

" is constant. We provide a closed-formed characterization of the test MSE and training loss. Our derivation exploits a mapping of the
student to a (variant of) a Generalized Linear Model [NW72,M19] . Then, summary statistics characterized by self-consistent state evolution equations
[JM13] asymptotically describe the fixed points of a Generalized Approximate Message Passing algorithm [RSR+16]. The fixed points of GAMP in turn
correspond to critical points of the non-convex empirical loss landscape, so we can use them to describe the local minima and saddles of the loss. This limit
has be considered before for similar models (e.g. [EPR+20]), but for attention only by [RGL+23] and without an emergent phenomenology.
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* more info
On Histogram

Phenomenology For a concrete teacher T and student S we find a posiConal and a semanCc minimum in the 
training loss landscape. There is a phase transiCon in terms of sample complexity 𝛼 and the teacher mix ω.
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