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Motivation Why and how do algorithmic abilities emerge in learned Low-rank Tied Dot-Product Attention We use sentences of uncorrelated (1-gram) words as x € R*? with L tokens
neural networks? How does the network understand the semantics | | {x;},—; ,independently drawn from a Gaussian distribution x; ~ N(0,Z;) with covariance £; € R%*¢, and n data
of the inputs? Is this emergence a fast but smooth change of | | samples. The goal is to learn the target using the student, by optimizing the empirical risk:

performance or a sharp boundary between different regimes of ) "1 Y
|earn|ng? Target/Teacher y(x) =T [LmQ*] xZr ERM Q — a'rgmin Z ﬁ ||y(ml1') o fQ(wﬂ')HQ + §||Q||2
r \/a QcRIXT =1
P R Phase Transition in Physics: Properties of a system of 1 1 2
m&‘: — L'\ﬂ many interacting particles change apruptly as you Learned Student fQ(x) =39S ﬁ(m +p)Q| (x + p) Test Error €g = d—L]EmNpm y(x) — fé(m)H
change environmental parameters.
Main Technical Result oOur result holds for teacher T and student S functions in the infinite sample and parameter limit where the sample
N . “Emergence” in ML: Capabilities/solution strategies of complexity a = g is constant. We provide a closed-formed characterization of the test MSE and training loss. Our derivation exploits a mapping of the
W N % the learned algorithm change abruptly as more student to a (variant of) a Generalized Linear Model [NW72,M19] . Then, summary statistics characterized by self-consistent state evolution equations

[JM13] asymptotically describe the fixed points of a Generalized Approximate Message Passing algorithm [RSR+16]. The fixed points of GAMP in turn
correspond to critical points of the non-convex empirical loss landscape, so we can use them to describe the local minima and saddles of the loss. This limit
has be considered before for similar models (e.g. [EPR+20]), but for attention only by [RGL+23] and without an emergent phenomenology.

parameters/samples are available.

Phenomenology For a concrete teacher T and student S we find a positional and a semantic minimum in the

Positional & Semantic Learning To understand a sentence we use training loss landscape. There is a phase transition in terms of sample complexity a and the teacher mix w.

both two types of information.

The meaning of the tokens (semantics) ... data
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Example: Histogram Task™ For each input token count the number target E <2 |
. . . . o) 0.2 20 0.8 + : Zi:?ﬁgﬁ';
of identical tokens in the input sequence. ‘00T g ~0.0005 3 I
y(x) = [(1 — w)softmax( *d* ) + wA] - X on 'z o] §7.0
Input -> Output : I -0.0010 = w o [
] ] i B C B B L H B 3 8ol s ot s
[B,A,A,D,E] 1, s K TEL — with 4 € RFE, 0, € R? : y, 0.0015
_AJ ) JAJ A_ (B; 6 |42 6 6 6 h[; 6 6 6 Of.eow 0.5 1&0 1.5 ma,zri}(f) 0.2 1 :
» 0,0, 0,0, gg Z Z j 2 ; m j Z ; student sample complexity . %
7 © 5 6 o IR 6 6 T e o os ws 1o 1z O
a B i 7 6 7 A G 6 7 mjo?
. _ B gl 6 4 6 ¢ IR 7 6 6 (X + )QQT X + T
We train a 1-layer transformer - cm . g fo(x) = Softmax( p A (x+p) ) |
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