DyNCA: Real-Time Dynamic Texture Synthesis Using Neural Cellular Automata

Ehsan Pajouheshgar*, Yitao Xu*, Tong Zhang, Sabine Susstrunk

Problem

Textures are everywhere. We perceive them as spatially repetitive patterns. Dynamic Textures are textures that change over time inducing a sense of motion.

Cellular Automata and Conway’s Game of Life

- **Grid:** State of the cell at location i, j at time t is S_{ij}^t.
- **Neighborhood:** Cells can perceive their neighbors.
- **Update rule:** How cell states change at each step.

Game of Life

- Survive if 2 or 3 neighbors are alive
- Become alive if 3 neighbors are alive
- Die or remain dead

Cellular Automata can be implemented using Convolutions, Gilpin [2019].

Architecture

- **Cell States:** State is a c dimensional vector. The first 3 dimensions are the RGB values.
- **Perception:** Four fixed convolution kernels that are frozen during the model’s training.
- **Multi-scale Perception:** Increase the communication range of the cells and improve stability.
- **Positional Encoding:** Allows the cells to be aware of their global position in the grid.
- **Positional Encoding:** The update rule is represented by two trainable FC layers and a random binary update mask.

Contributions

- (I) Arbitrary Resolution
- (II) Arbitrary long videos
- (III) Synthesize new samples
- (IV) Real-time video editing
- (V) Require pretrained models
- (VI) Disentangled appearance and motion.
- (VII) Vector field supervision.

Comparison and User Study

- We show videos to the participants and ask them to choose the video that appears the most realistic.
- (A) Tesfaldet et al. [2018]. (B), and (C) two different configurations from Xie et al. [2017].

Results

- Top: DyNCA captures the appearance and the motion from a video.
- Bottom: DyNCA also disentangles the appearance and motion and performs Dynamic Style Transfer when the target dynamics are different.

Training and Loss Functions

- **Synthetic Frame:** $S^f = \frac{1}{3} \sum_{i,j \in \text{mask}} (K_{fb}(S_{ij}) + K_{fg}(S_{ij}))$
- **Optical Flow:** $\mathcal{L}_{optical} = \left\| \mathcal{L}(S_{ij}, P_{ij}) + \mathcal{L}(P_{ij}, S_{ij}) \right\|_1$
- **Style Matching Loss:** $\mathcal{L}_{style} = \sum_{i,j \in \text{mask}} \left(\frac{1}{c} \sum_{k=1}^{c} \left(\frac{1}{h} \sum_{i,j \in \text{mask}} \left(\frac{1}{w} \sum_{k=1}^{w} \left(\frac{1}{c} \sum_{l=1}^{c} (S_{ij,k}^{l} - mean_{i,j,k}^{l})(P_{ij,k}^{l} - mean_{i,j,k}^{l}) \right)^2 \right) \right)^2 \right)$

Link to our Demo

dynca.github.io