# **Generalizing Bulk-Synchronous Parallel Model for Data Science: From Data to Threads and Agent-Based Simulations**

## Zilu Tian<sup>1</sup>, Peter Lindner<sup>1</sup>, Christoph Koch<sup>1</sup>, Markus Nissl<sup>1</sup>, Val Tannen<sup>2</sup> <sup>1</sup>DATA, EPFL <sup>2</sup>University of Pennsylvania

## Why agent-based simulations matter?

• Epidemics







gent-based modelling of reactive vaccination of workplaces and schools against COVID-19

Benjamin Faucher, Rania Assab, Jonathan Roux, Daniel Levy-Bruhl, Cécile

Nature Communications 13. Article number: 1414 (2022) 2033 Accesses 65 Altmetric Metric

### **Challenges of agent-based simulations**

- Agent-based simulations are flexible, but inefficient to execute
  - High concurrency
    - A realistic simulation has billions of agents
  - Code heterogeneity





- "Think like a vertex" is homogeneous
- Communication-intensive
  - Existing frameworks assume little or no communication

• Economics

### Published: 05 August 2009

### The economy needs agent-based modelling



- For data management
  - Simulations generate a large amount of data
    - Image long-running simulations with billions of agents
  - Simulations form part of complex analytics pipelines
    - "How does the average wealth of the top 30% change?"
  - Simulations are can be viewed as model samples
    - "What is the average wealth of the population if we increase the initial wealth by 10%, 20% and 50%, respectively?"

## What are agent-based simulations, really?

- Depend on who you ask!
  - A recent survey in 2020 listed
    - 36 general-purpose frameworks
    - 100+ specialized frameworks
  - Different assumptions about agents
    - NetLogo considers turtles as agents, along with patches and links
    - DMASON assumes each agent belongs to a temporal region
    - Repast Symphony assumes that agents actions are scheduled
  - Different assumptions about interaction
    - NetLogo assumes spatial-based interaction DMASON is based on publish-subscribe paradigm

### Contributions

- Formal models that define agents and their interactions
  - Programming model
    - Agents are sequential processes that communicate through messaging
    - A simulation is, conceptually, concurrent execution of interacting agents
    - "Simulate" as an operator for integrating with data science pipeline
  - Computational model
    - Weighted hierarchical BSP model
- Optimizations
  - Thread merging

| Frontend Query |             | Simulate Op. | DSL           |  |
|----------------|-------------|--------------|---------------|--|
| Ontimizations  | Defendetion | Thread       | Direct Memory |  |

• Repast Symphony allows instant changes to other agents' states

2 ABMS Software Packages

- The lack of formal models causes high heterogeneity
  - Increase users' learning curves
  - Decrease cross-platform result verification
  - Hard to select the right tool
  - Limit performance optimizations to framework-dependent
- Generally speaking, frameworks are round-based or asynchronous
  - whether agents proceed in lockstep
  - But frameworks have different flavor of "round-based" or "asynchronous"

| 2.2                   | And | InoMoto              |      |               |                                                           |                                                                                                                                                                                                                           |                                              |                                                                                                                                                                                               |
|-----------------------|-----|----------------------|------|---------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.3                   | _   | 2.20 N               | letL | ogo           |                                                           |                                                                                                                                                                                                                           |                                              |                                                                                                                                                                                               |
| 2.0                   |     | 2.21                 | non  | StarLog       | TO                                                        |                                                                                                                                                                                                                           |                                              |                                                                                                                                                                                               |
| 2.4 $2.5$             |     | 2.22                 | 10   | Insight Maker | Runs in the<br>browser and<br>modeling is<br>done through | https://insightmaker.com/<br>Projects:<br>https://insightmaker.com/new                                                                                                                                                    | Open source (Qt)                             | System dynamics,<br>agent-based modeling<br>in the browser.                                                                                                                                   |
| 2.6                   |     | 2.23                 | 11   | JaCaMo        | the browser UI<br>AgentSpeak<br>(Jason)                   | http://jacamo.sourceforge.net/<br>http://cartago.sourceforge.net/                                                                                                                                                         | Open source                                  | Autonomous agents,<br>environment artifacts,<br>multiagent<br>organizations                                                                                                                   |
| 2.7                   |     | 2.24                 | 12   | JADE          | Java, C# (JADE<br>LEAP)                                   | http://jade.tilab.com/                                                                                                                                                                                                    | Open source (Java)                           | FIPA-compliant<br>middleware, graphical<br>debugging and<br>deployment tools                                                                                                                  |
| 2.8                   |     | 2.25                 | 13   | JADEX         | Java                                                      | https://www.activecomponents.org/#/download                                                                                                                                                                               | Open source (Java)                           | Rational agents on top<br>of JADE, BDI                                                                                                                                                        |
| 2.9<br>2.1            |     | 2.26<br>2.27<br>2.28 | 14   | Janus, SARL   | SARL,<br>interoperable<br>with Java                       | http://www.janusproject.io/<br>https://github.com/janus-project<br>http://www.sarl.io/                                                                                                                                    | Open source (Java)                           | Agent-oriented SARL<br>language, fundamental<br>abstractions for<br>dealing with<br>concurrency,<br>distribution,<br>interaction,<br>decentralization,<br>reactivity, autonomy<br>and dynamic |
| 2.1<br>2.1<br>2.1     | 2   | 2.29<br>2.30         | 15   | JAS-mine      | Java                                                      | http://www.jas-mine.net/                                                                                                                                                                                                  | Open source                                  | reconfiguration<br>Discrete-event<br>simulation, including<br>agent-based and<br>micro-simulation<br>models. Integration<br>with RDBMS<br>(relational database<br>management tools            |
| $\frac{2.1}{2.1}$     |     | 2.31<br>Oth          | 16   | MADKIT        | Java                                                      | http://www.madkit.org/                                                                                                                                                                                                    | Open source                                  | AGR<br>(Agent/Group/Role)<br>organizational model:<br>agents play roles in<br>groups and thus create<br>artificial societies.                                                                 |
| $5^{\frac{2.1}{2.1}}$ | 6   | 3.1<br>3.2           | 17   | MASON         | Java                                                      | https://cs.gmu.edu/~eclab/projects/mason/<br>Projects:<br>https://github.com/eclab/mason/<br>https://cs.gmu.edu/~eclab/projects/mason/#Projec<br>Is<br>Manual:<br>https://cs.gmu.edu/~eclab/projects/mason/manual<br>_pdf | Open source                                  | Discrete event<br>multiagent simulation;<br>2D and 3D<br>visualization                                                                                                                        |
| 2.1                   | 8   | 3.3                  | 18   | MASS          | Java, C++, Cuda                                           | http://depts.washington.edu/dslab/MASS/                                                                                                                                                                                   | Open source (Java,<br>C++)                   | Parallel-computing<br>library for multiagent<br>and spatial simulation<br>over a cluster of<br>computing nodes.                                                                               |
|                       |     | $\frac{3.4}{3.5}$    | 19   | Mesa          | Python 3+,<br>recent code,                                | https://mesa.readthedocs.io/en/master/overview.h<br>tml<br>https://github.com/projectmesa/mesa<br>https://www.researchgate.net/publication/328774<br>079_Mesa_An_Agent-<br>Based_Modeling_Framework                       | Open source,<br>Apache2 licensed<br>(Python) | Python 3 alternative to<br>NetLogo, Repast,<br>MASON.                                                                                                                                         |
|                       |     |                      | 20   | MOOSE         | C++                                                       | https://www.mooseframework.org/<br>Code:<br>https://github.com/idaholab/moose                                                                                                                                             | Open source (C++)                            | High-scale<br>Multiphysics object-<br>oriented simulation<br>environment.                                                                                                                     |

- Tame high-concurrency
- Direct memory accesses
  - Bypass messaging overhead
- Deforestation
  - Reduce the volume of generated data
- Implementation
  - An eDSL in Scala for parallel agent programming
  - A system architecture based on the BSP-like model





### Performance

### Deforestation Merging Access Partition Round Message Query Core Controller Engine Controller Adapter Backend Akka

### **Benchmark Description**

### Population Dynamics

- Simulate the game of life example in a 2D grid
- Model each cell in the grid as an agent
- Economics
  - Simulate the bidding process in the stock market
  - Model traders and the stock market as agents
- Epidemics
  - Simulate individuals of states Susceptible, Infectious, Recovered, Hospitalized, or Deceased
  - Model the population and locations as agents
  - Use random graph models to simulate population connectivity
    - Erdos-Renyi Model (ERM)
    - Stochastic Block Model (SBM)

• Our system has on par or better performance than current BSP-like systems





### Effective optimizations



