Generalizing Bulk-Synchronous Parallel Model for Data Science: From Data to Threads and Agent-Based Simulations

Zilu Tian, Peter Lindner, Christoph Koch, Markus Nissl, Val Tannen

DATA, EPFL University of Pennsylvania

Why agent-based simulations matter?

- Epidemics
 - London's Imperial College predicts utilize to be from consuming excess in UK and
 - Behind the Virus Report That Jailed the UK, the UK in Action

- Economics
 - The economy needs agent-based modelling
 - What is the average wealth of the population if we increase the initial wealth by 10%, 20% and 50%, respectively?

What are agent-based simulations, really?

- Depend on who you ask!
 - A recent survey in 2020 listed
 - 36 general-purpose frameworks
 - 100+ specialized frameworks
 - Different assumptions about agents
 - NetLogo considers turtles as agents, along with patches and links
 - DMASON assumes each agent belongs to a temporal region
 - Repast Symphony assumes that agents actions are scheduled
 - Different assumptions about interaction
 - NetLogo assumes spatial-based interaction
 - DMASON is based on publish-subscribe paradigm
 - Repast Symphony allows instant changes to other agents’ states
 - The lack of formal models causes high heterogeneity
 - Increase users’ learning curves
 - Decrease cross-platform result verification
 - Hard to select the right tool
 - Limit performance optimizations to framework-dependent
 - Generally speaking, frameworks are round-based or asynchronous
 - whether agents proceed in lockstep
 - But frameworks have different flavors of “round-based” or “asynchronous”

Challenges of agent-based simulations

- Agent-based simulations are flexible, but inefficient to execute
 - High concurrency
 - A realistic simulation has billions of agents
 - Code heterogeneity
 - “Think like a vertex” is homogeneous
 - Communication-intensive
 - Existing frameworks assume little or no communication
 - For data management
 - Simulations generate a large amount of data
 - Image long-running simulations with billions of agents
 - Simulations form part of complex analytics pipelines
 - “How does the average wealth of the top 30% change?”
 - Simulations can be viewed as model samples
 - “What is the average wealth of the population if we increase the initial wealth by 10%, 20% and 50%, respectively?”

Contributions

- Formal models that define agents and their interactions
 - Programming model
 - Agents are sequential processes that communicate through messaging
 - A simulation is, conceptually, concurrent execution of interacting agents
 - “Simulate” as an operator for integrating with data science pipeline
 - Computational model
 - Weighted hierarchical BSP model
 - Optimizations
 - Thread merging
 - Tame high-concurrency
 - Direct memory accesses
 - Bypass messaging overhead
 - Deforestation
 - Reduce the volume of generated data
 - Implementation
 - An eDSL in Scala for parallel agent programming
 - A system architecture based on the BSP-like model

Benchmark Description

- Population Dynamics
 - Simulate the game of life example in a 2D grid
 - Model each cell in the grid as an agent
- Economics
 - Simulate the bidding process in the stock market
 - Model traders and the stock market as agents
- Epidemics
 - Simulate individuals of states Susceptible, Infectious, Recovered, Hospitalized, or Deceased
 - Model the population and locations as agents
 - Use random graph models to simulate population connectivity
 - Erdos-Renyi Model (ERM)
 - Stochastic Block Model (SBM)

Performance

- Our system has on par or better performance than current BSP-like systems
- Effective optimizations

Data plane
- Agent
- RAM data
- Message
 - In-memory, Network
- Partition, begin/ends
- Deforestation
- Reduce the volume of generated data