Novelty drives human exploration even when it is suboptimal
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2.1. Instruction given to participants:
There are 3 goal states with different reward values:

1. Introduction
How do humans explore environments with sparse rewards”?

2. Experiment

One episode:

Recent models in computational and behavioral neuroscience: Goal state SwigsHIIZ:r:anc 2 CHF |and| 3CHF | and| 4 CHF
- Intrinsically motived RL algorithms: incorporating intrinsic reward signals into traditional RL models. [1] action S 2 CHF o , .
_ _ o | _ _ _ t+1 Participants were instructed to move to any of the three goal states 5 times
- However, different choices of intrinsic reward result in fundamentally different exploration strategies. 2] (= 5 episodes).
A new question: Which intrinsic reward explains human behavior best? state ¢ o o

2.2. Reward manipulation:

Our contribution:
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Inspired by the so-called “noisy TV” problem in machine learning [3], we design an experimental paradigm S = fo motivate exploration, there was only one goal state:

where three representative intrinsic rewards (novelty [4,5], surprise [6,7], and information-gain [8-10]) make - T / 2CHF |OR| 3CHF | OR| 4 CHF

different behavioral predictions. \We test these predictions against the behavior of human participants. / 0.7-1.7s We h : . + [2chF
— _ | e focus on the group of participants with lowest reward:
[] Gottlieb and Oudeyer, 2018; [2] Aubret et al., 2022: [3] Burda et al., 2019; [4] Bellemare et al., 2016; [5] Xu and Modirshanechi et al., 2021: / response time — N e eoieodes 2.5 to find the | e
[6] Kobayashi et al., 2019; [7] Pathak et al., 2017; [8] Itti and Baldi, 2009; [9] Schmidhuber, 2010;  [10] Horvath et al., 2021; | 07-17s Ighly motivated to explore in episodes 2-5 to find the larger rewards:
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4.1. Human persistent attraction to the stochasticity is consistent with the behavior of agents seeking novelty
but NOT with those seeking inf.-gain, despite the close-to-optimal behavior of agents seeking inf.-gain.

3. Underlying Map (unknown to the participants) 4. Results

e An environment with 58 states + 3 actions per state.
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5. Conclusions 1. Simulated agents driven by inf.-gain eventually lose their interest in 1. Human participants who are optimistic about the availability of goal states of higher value
5.1. Simulated stochasticity when they realize that there is no information to gain. 5.2. Human than those already known exhibit a persistent attraction to stochasticity.
agents 2. Agents driven by novelty exhibit a persistent attraction to stochasticity. participants 2. This behavior is both qualitatively and quantitatively consistent with that of novelty-driven
3. Agents driven by surprise exhibit a detrimentally increasing attraction. | agents and NOT with those driven by inf.-gain (= optimal behavior) or surprise.
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