
Landmark Attention
Random-Access Infinite Context Length for Transformers

Amirkeivan Mohtashami, Martin Jaggi

Machine Learning and Optimization Laboratory

Overview
•	 Attention is the a key component in the highly success-

ful Transformer architecture.
•	 However, it has a quadratic computational cost, limiting

the input (context) length.
•	 Previous approaches to alleviate this cost sacrifice At-

tention’s random-access flexibility.
•	 We propose Landmark Attention to allow the attention

itself to be used for retrieval, maintaining its random access flexibility.

Retriever Sparsity
Pattern

Previous Approaches Landmark Attention

•	 We break the input into blocks of fixed length and introduce a special token for each block, called a
landmark, which acts as a gate for attending to its corresponding block.

•	 The gating mechanism is controlled by the attention score to the landmark token.
•	 At inference time, we compute the attention scores of the landmarks and retrieve the blocks corre-

sponding to the highest scoring landmarks (active gates), integrating them into the attention.
•	 Our proposed approach maintains the random-access flexibility of attention and offers an alternative

solution to the recurrent memory approaches.

Landmark Attention

ebcba

ebcba

e

bcba

e

bcba
Standard
Attention

Attention with
Landmarks

•	 First, break the input into chunks and augment the sequence by landmark tokens.
Each chunk contains multiple blocks.

•	 The chunks are iteratively fed to the model from the beginning to the end.
•	 When processing each chunk at each layer, for each token we first compute the attention score to

the landmark tokens currently in the cache.
•	 We only compute the attention score to tokens in the blocks of the top k high scoring landmarks.
•	 This is a close approximation to training as tokens in blocks with low scoring landmarks will not

receive a high weight anyway.
•	 The performance can be further improved by using nearest neighbor data structures.
•	 Computation cost is immediately improved by a factor of the block size

(50x speedup in this work).
•	 The chunk size can be chosen smaller than the training context size to

decouple training and inference context lengths.

Stingy Position Mapping
•	 Challenge: Transformers are unable to extrapolate to position indices not observed during training.
•	 Previous methods proposed to allevi-

ate this flaw usually penalize or pre-
vent attention to long distance tokens.

•	 Instead we propose a special approxi-
mate position mapping scheme called
stingy position mapping.

•	 The position mapping maintains the
position of the last k blocks but maps
all earlier blocks to the same position.

•	 The retrieved blocks are prepend-
ed in order to the current chunk with
an empty block separating retrieved
blocks in the last k blocks from earlier ones.

Inference
a b c d e f g h i j k l

a b c d e f g h i j k l

a b c d e f g h i j k l

 Processing

e

hg

ji

dc

ba

Memory

p srq

New Input

p srq

a
b

a
b

c
d

c
d

e
f

e
f

g
h

g
h

i
j

i
j

f

p srqji i
jdc c

d

p srqdc c
d e e

ff

p srqhg g
h ji i

j

Retreival Position Mapping

Final Attention Position Mapping

•	 Mostly standard training procedure is used except for the following changes:
	□ Landmark token is added to the vocabulary, increasing the size by one.
	□ Landmark tokens are inserted every after every tokens.
	□ GroupedSoftmax is used to compute Softmax in groups.
	□ A special grouping scheme imposes a hierarchy leading to the gating
mechanism that can be used for retrieval.

Landmark Attention
•	 Given the vector of dot products v and grouping g, the grouped softmax is

computed as:

Landmark Attention

ebcba

ebcba

e

bcba

e

bcba
Standard
Attention

Attention with
Landmarks

Figure 1. An illustration comparing standard attention and our attention with landmarks. The example shows the (causal) attention given
by a current token e to previous ones, illustrating our mechanism with block-size `block =2. The attention scores rely on the similarity of
query vector with the key vector, and in our case also with the landmark vector corresponding to the block. This is why the same token b
can have a high (green) attention score when being part of one block and a low (red) attention score when being in other one, despite
having the same representative vector in both cases. Landmark tokens (same as regular tokens) have the same vector representation at the
first layer. However, this changes as they are updated though depth, leading to the illustrated behavior of attention at the intermediate
layers.

consisting of all previous tokens until the previous landmark
token (or the beginning of the input if no previous landmark
token exists). The token is passed through the transformer
as any other token while its representation is updated using
the self-attention mechanism. Let us denote the index (token
position) of the landmark corresponding to the i-th token’s
block by pi. If the last block is incomplete and does not
have a landmark token, we define pi := `seq. If the i-th
token is a landmark token, pi := i .

In order to train the transformer to make use of landmark
tokens, we alter the standard attention mechanism such that
the attention weight for a token depends on the similarity of
the query vector with both the token’s key as well as with
the key of its block’s landmark token. To define the mecha-
nism, we first define a generalized softmax function called
Grouped Softmax. Given a vector v 2 R`seq and a group
index g 2 N`seq , Grouped Softmax applies softmax sepa-
rately over elements belonging to the same group. (Using
g = 1`seq recovers the standard softmax function):

σG(v,g)i := GroupedSoftmax(v,g)i :=
evi

P
j:gj=gi

evj
.

(1)

We replace the softmax function after computing the atten-
tion scores with Grouped Softmax. For each block, we put
its regular tokens in a separate group, ensuring that all regu-
lar tokens within the same block share the same group, while
tokens outside the block are assigned to different groups.
When computing the attention weights for the i-th token,
landmark tokens for other blocks are placed in the same
group as the i-th token. The landmark token for the i-token’s
block is ignored when computing the attention weights for
the i-th token. In other words, the landmark token for each
block is only used by tokens in other blocks. This is intu-
itive as the landmark token should only be accessed when
tokens in other blocks require to retrieve information from
the landmark’s corresponding block. Building on the fact

that pj = j only holds when the j-th token is a landmark
token, we can define the grouping used for the i-th token
more formally as

Gi,j :=

8
>>>>>>>>><

>>>>>>>>>:

pj pj 6= j
Bplacing normal tokens
in their own blocks.

−1 pi = j
Bignoring current
block’s landmark token.

pi otherwise
Bplacing other land-
marks in the i-th token’s
group.

.

Finally, to obtain the final weights after applying
GroupedSoftmax, we multiply each token’s softmax out-
put with the softmax output for its block’s landmark token.
For the tokens in the same group as the i-th token, we di-
rectly use the softmax output as its attention weight. The
weight for landmark tokens is always zero. In formal terms,

Si,j := SoftmaxScore(Q,K)i

:= GroupedSoftmax
⇣Q>

i ⇥K
p
dhead

,Gi

⌘

Att(Q,K)i,j :=

8
><

>:

0 pj = j

Si,j Gi,j = Gi,i ^ pj 6= j

Si,j · Si,pj Gi,j 6= Gi,i ^ pj 6= j

.

An exmaple illustration of various values defined above
is given in Appendix B. Note that under this scheme, the
attention weights sum to one as is the case for the standard
softmax function. More importantly, attending to tokens in
other blocks is gated by the attention score to the landmark
token as expected. Since tokens in the same block and the
landmark tokens share the softmax group, the model has to
choose between attending to other blocks and current tokens.
Thus, the intuition behind the grouping is to force the model
to only attend to relevant blocks due to this trade-off.

We note that attention masks can be applied normally by
ignoring the masked elements in the softmax (e.g. by setting

3

•	 For each block, we create a separate group and put its
regular (non-landmark) tokens in that group.

•	 When computing the attention weights for the i-th token, landmark
tokens for other blocks are placed in the same group as the i-th token.

•	 The landmark token for the i-th token’s block is ignored when computing
the attention weights for the i-th token.

•	 Using the above grouping, the attention weight for each token can be
computed as the product of the token’s attention weight and it’s
corresponding landmark token’s attention weight.

•	 Under this scheme, the attention weights sum to one same as in the
standard Softmax function.

•	 Since tokens in the same block and the
landmark tokens share the Softmax group,
the model has to choose between attending
to other blocks and current tokens.

•	 Intuitively, the grouping forces the model to
only attend to relevant blocks because of
this trade-off.

Training
•	 LLaMA 7B is originally trained at 2048 context length.
•	 We fine-tune LLaMA 7B using our method and develop the pass key retrieval task to benchmark

its performance on much larger context lengths.

Pass Key Retrieval Task
•	 The task is to find a pass phrase

hidden in a long piece of text.
•	 Instances of this task are generated

by randomly choosing the pass key
(a number between 1 and 50000) as
well as its location.

•	 Prefix and suffix strings filled with a
repetitive text are added to the pass
key to ensure the desired length.

•	 We use the success rate as the
evaluation metric.

Evaluation
•	 The original model fails to retrieve the pass

key and even runs out of memory as the
prompt gets longer (marked with a red
cross)

•	 In contrast, the fine-tuned model using land-
marks can successfully identify the pass key
with a high success rate for con-
texts with over 32k tokens.

•	 The results demonstrate that our meth-
od can be successfully used even during
fine-tuning to extend the context length limit
to arbitrary large values.

•	 For very large context lengths, e.g. 32k, to
avoid running out of memory, we use
the capability offered by landmark attention
allowing us to offload the majority of
the key-value cache to CPU
(a green star marks this mechanism’s deployment).

LLaMA 7B 32k

MatMul

Scale

Mask (opt.)

GroupedSoftmax

MatMul

Q K V

2 2 2 5 5 5

0 1 2 3 4 5

1 1 1 1 1 1

0.5 0.5 0.33 0.5 0.5 0.33

2 2 8 3 3 8

6 7 8

8 8 8

8 8 -1

1 mask mask

0.33 0 ign

0.167 0.167 0 0.167 0.167 0 0.33 0 0

Landmark Attention

ebcba

ebcba

e

bcba

e

bcba
Standard
Attention

Attention with
Landmarks

Figure 1. An illustration comparing standard attention and our attention with landmarks. The example shows the (causal) attention given
by a current token e to previous ones, illustrating our mechanism with block-size `block =2. The attention scores rely on the similarity of
query vector with the key vector, and in our case also with the landmark vector corresponding to the block. This is why the same token b
can have a high (green) attention score when being part of one block and a low (red) attention score when being in other one, despite
having the same representative vector in both cases. Landmark tokens (same as regular tokens) have the same vector representation at the
first layer. However, this changes as they are updated though depth, leading to the illustrated behavior of attention at the intermediate
layers.

consisting of all previous tokens until the previous landmark
token (or the beginning of the input if no previous landmark
token exists). The token is passed through the transformer
as any other token while its representation is updated using
the self-attention mechanism. Let us denote the index (token
position) of the landmark corresponding to the i-th token’s
block by pi. If the last block is incomplete and does not
have a landmark token, we define pi := `seq. If the i-th
token is a landmark token, pi := i .

In order to train the transformer to make use of landmark
tokens, we alter the standard attention mechanism such that
the attention weight for a token depends on the similarity of
the query vector with both the token’s key as well as with
the key of its block’s landmark token. To define the mecha-
nism, we first define a generalized softmax function called
Grouped Softmax. Given a vector v 2 R`seq and a group
index g 2 N`seq , Grouped Softmax applies softmax sepa-
rately over elements belonging to the same group. (Using
g = 1`seq recovers the standard softmax function):

σG(v,g)i := GroupedSoftmax(v,g)i :=
evi

P
j:gj=gi

evj
.

(1)

We replace the softmax function after computing the atten-
tion scores with Grouped Softmax. For each block, we put
its regular tokens in a separate group, ensuring that all regu-
lar tokens within the same block share the same group, while
tokens outside the block are assigned to different groups.
When computing the attention weights for the i-th token,
landmark tokens for other blocks are placed in the same
group as the i-th token. The landmark token for the i-token’s
block is ignored when computing the attention weights for
the i-th token. In other words, the landmark token for each
block is only used by tokens in other blocks. This is intu-
itive as the landmark token should only be accessed when
tokens in other blocks require to retrieve information from
the landmark’s corresponding block. Building on the fact

that pj = j only holds when the j-th token is a landmark
token, we can define the grouping used for the i-th token
more formally as

Gi,j :=

8
>>>>>>>>><

>>>>>>>>>:

pj pj 6= j
Bplacing normal tokens
in their own blocks.

−1 pi = j
Bignoring current
block’s landmark token.

pi otherwise
Bplacing other land-
marks in the i-th token’s
group.

.

Finally, to obtain the final weights after applying
GroupedSoftmax, we multiply each token’s softmax out-
put with the softmax output for its block’s landmark token.
For the tokens in the same group as the i-th token, we di-
rectly use the softmax output as its attention weight. The
weight for landmark tokens is always zero. In formal terms,

Si,j := SoftmaxScore(Q,K)i

:= GroupedSoftmax
⇣Q>

i ⇥K
p
dhead

,Gi

⌘

Att(Q,K)i,j :=

8
><

>:

0 pj = j

Si,j Gi,j = Gi,i ^ pj 6= j

Si,j · Si,pj Gi,j 6= Gi,i ^ pj 6= j

.

An exmaple illustration of various values defined above
is given in Appendix B. Note that under this scheme, the
attention weights sum to one as is the case for the standard
softmax function. More importantly, attending to tokens in
other blocks is gated by the attention score to the landmark
token as expected. Since tokens in the same block and the
landmark tokens share the softmax group, the model has to
choose between attending to other blocks and current tokens.
Thus, the intuition behind the grouping is to force the model
to only attend to relevant blocks due to this trade-off.

We note that attention masks can be applied normally by
ignoring the masked elements in the softmax (e.g. by setting

3

Landmark Attention

ebcba

ebcba

e

bcba

e

bcba
Standard
Attention

Attention with
Landmarks

Figure 1. An illustration comparing standard attention and our attention with landmarks. The example shows the (causal) attention given
by a current token e to previous ones, illustrating our mechanism with block-size `block =2. The attention scores rely on the similarity of
query vector with the key vector, and in our case also with the landmark vector corresponding to the block. This is why the same token b
can have a high (green) attention score when being part of one block and a low (red) attention score when being in other one, despite
having the same representative vector in both cases. Landmark tokens (same as regular tokens) have the same vector representation at the
first layer. However, this changes as they are updated though depth, leading to the illustrated behavior of attention at the intermediate
layers.

consisting of all previous tokens until the previous landmark
token (or the beginning of the input if no previous landmark
token exists). The token is passed through the transformer
as any other token while its representation is updated using
the self-attention mechanism. Let us denote the index (token
position) of the landmark corresponding to the i-th token’s
block by pi. If the last block is incomplete and does not
have a landmark token, we define pi := `seq. If the i-th
token is a landmark token, pi := i .

In order to train the transformer to make use of landmark
tokens, we alter the standard attention mechanism such that
the attention weight for a token depends on the similarity of
the query vector with both the token’s key as well as with
the key of its block’s landmark token. To define the mecha-
nism, we first define a generalized softmax function called
Grouped Softmax. Given a vector v 2 R`seq and a group
index g 2 N`seq , Grouped Softmax applies softmax sepa-
rately over elements belonging to the same group. (Using
g = 1`seq recovers the standard softmax function):

σG(v,g)i := GroupedSoftmax(v,g)i :=
evi

P
j:gj=gi

evj
.

(1)

We replace the softmax function after computing the atten-
tion scores with Grouped Softmax. For each block, we put
its regular tokens in a separate group, ensuring that all regu-
lar tokens within the same block share the same group, while
tokens outside the block are assigned to different groups.
When computing the attention weights for the i-th token,
landmark tokens for other blocks are placed in the same
group as the i-th token. The landmark token for the i-token’s
block is ignored when computing the attention weights for
the i-th token. In other words, the landmark token for each
block is only used by tokens in other blocks. This is intu-
itive as the landmark token should only be accessed when
tokens in other blocks require to retrieve information from
the landmark’s corresponding block. Building on the fact

that pj = j only holds when the j-th token is a landmark
token, we can define the grouping used for the i-th token
more formally as

Gi,j :=

8
>>>>>>>>><

>>>>>>>>>:

pj pj 6= j
Bplacing normal tokens
in their own blocks.

−1 pi = j
Bignoring current
block’s landmark token.

pi otherwise
Bplacing other land-
marks in the i-th token’s
group.

.

Finally, to obtain the final weights after applying
GroupedSoftmax, we multiply each token’s softmax out-
put with the softmax output for its block’s landmark token.
For the tokens in the same group as the i-th token, we di-
rectly use the softmax output as its attention weight. The
weight for landmark tokens is always zero. In formal terms,

Si,j := SoftmaxScore(Q,K)i

:= GroupedSoftmax
⇣Q>

i ⇥K
p
dhead

,Gi

⌘

Att(Q,K)i,j :=

8
><

>:

0 pj = j

Si,j Gi,j = Gi,i ^ pj 6= j

Si,j · Si,pj Gi,j 6= Gi,i ^ pj 6= j

.

An exmaple illustration of various values defined above
is given in Appendix B. Note that under this scheme, the
attention weights sum to one as is the case for the standard
softmax function. More importantly, attending to tokens in
other blocks is gated by the attention score to the landmark
token as expected. Since tokens in the same block and the
landmark tokens share the softmax group, the model has to
choose between attending to other blocks and current tokens.
Thus, the intuition behind the grouping is to force the model
to only attend to relevant blocks due to this trade-off.

We note that attention masks can be applied normally by
ignoring the masked elements in the softmax (e.g. by setting

3

index of landmark token
corresponding to i-th token’s block

•	 We train a 12-layer decoder-only Transformer with 8 heads and 128 hidden dimension on
language modeling tasks.

•	 In particular, we consider perplexity on PG-19 dataset and math papers from arXiv.
•	 Results demonstrate that Landmark Attention allows inference at much larger context lengths than

training context length.
•	 The performance at the larger context length is comparable to a Transformer-XL trained directly at

the larger context lengths on PG-19.

Language Modeling

Table 1: Performance of different training and inference settings in terms of language modeling
perplexity. The column XL cache shows the size of the XL cache available both during training
and inference which was only used when training Transformer-XL[9]. When using landmarks, the
column " Blocks" shows the maximum number of blocks stored in memory. Each block contains
`block =50 normal tokens and one landmark token. Due to computation limitations we only report
results for Transformer-XL on PG-19 as this method takes longer to train in our implementation.

Eval. Length `local XL cache Blocks k Attention Size PG19 arXiv

512
512 None None - 512 16.12 4.01 Baseline360 None None - 360 16.76 4.31

250 None 10 2 360 16.23 4.01 Ours

2048

256 256 None - 512 14.72 - [9]

250 None 40 2 360 15.14 3.43

Ours350 None 40 2 460 15.07 3.41
300 None 40 3 460 14.97 3.36
250 None 20 4 460 15.02 3.37
250 None 40 4 460 14.92 3.35

4096

256 256 None - 512 14.55 - [9]

250 None 40 4 460 14.79 3.19
Ours250 None 80 2 370 15.00 3.29

250 None 80 4 470 14.72 3.18

learning rate being 0.0004. We used GPT-2’s [28] tokenizer. When using landmark tokens, the tokens
were added to the dataset and stored as part of the train dataset, leaving the batching mechanism
unchanged. We used gradient accumulation as well as data-parallel training across four nodes to
maintain an effective total batch size of 128. We used mixed-precision training with bfloat16 over
at most 4 Nvidia A100 GPUs. For our method, we train the model on each dataset for 240K steps with
context length `seq = 512. We train Transformer-XL with a window size of 256 (i.e. effective context
size 512) over segments of length 2048. We train Transformer-XL to observe the same number of
tokens during training as our method which translates to performing 60K steps.

Results. To evaluate our model’s performance with different context lengths, we divide the
validation data into equally sized segments, referred to as evaluation lengths. Each segment is
separately inputted into our model, which is further divided into chunks using the method described
in Section 3.2. The chunk size, denoted as `local, represents the local context accessible without
any memory. Table 1 presents the perplexity of the trained models under various inference settings.
Notably, by using a local context length of 250 and retrieving the top k=2 most relevant blocks,
we achieve a comparable performance with a context length of 512. This corresponds to attending
to 360 tokens, including 250 tokens from the local context, 10 landmark tokens, and 100 tokens
from the retrieved blocks. The effectiveness of using landmark tokens with retrieval becomes even
more evident when comparing it to standard inference with an attention length of 360. Our results
demonstrate that intelligently recovering relevant blocks enables attending to a significantly smaller
number of tokens while maintaining performance.

Furthermore, our results highlight that landmark tokens enable the model to operate with larger context
lengths than those encountered during training. The improvement in perplexity clearly indicates
that the retrieved blocks contribute to the model’s performance, making the results comparable to
a Transformer-XL trained with segments of length 2048. However, unlike Transformer-XL, which
can only leverage past information through recurrence, our method allows the model to attend to any
token from the past, facilitating both the retention of exact fine-grained details and the interpretability
of information utilization mechanisms.

Finally, the number of retrieved blocks and the number of blocks stored in memory can be adjusted
during inference. While reducing the number of retrieved blocks k adversely affects performance, our
results demonstrate that the model still outperforms the baseline even with only 2 retrieved blocks at
context lengths of 2048 and 4096. Notably, when keeping only the last 40 blocks in memory, the
model performs better at an evaluation length of 4096 compared to 2048. This suggests that the
model is also learning to utilize recurrent mechanisms similar to those in Transformer-XL.

8

Landmark Attention

There is an important info hidden inside

a lot of irrelevant text. Find it and

memorize them. I will quiz you about the

important information there.

<prefix filler by continuously repeating:

The grass is green. The sky is blue. The

sun is yellow. Here we go. There and back

again.>

The pass key is <PASS KEY>. Remember it.

<PASS KEY> is the pass key.

<suffix filler>

What is the pass key? The pass key is

(a) Prompt Format

0 5000 10000 15000 20000 25000 30000
Prompt Length (Tokens)

0

20

40

60

80

100

Ac
cu

ra
cy LLaMA 7B

Landmark Finetuning

(b) Retrieval Accuracy

Figure 3. Prompt format used for comparing retrieval accuracy of the vanilla LLaMA 7B and its counterpart fine-tuned with landmarks.
The points marked with a red cross represent cases where the model ran out of memory. Points marked with a green star use a more
efficient inference mechanism (see Appendix H). Inference is done by feeding the segment in windows of length 250 tokens (excluding
the inserted landmark tokens). The top k=4 landmarked blocks are retrieved. Retrieval accuracy is measured for a fixed total prompt
length, by using the suffix and prefix filler. Results are averaged over 50 random generation of the pass key (a random number between 1
and 50000), which each time is located at a random position in the full-length prompt. The space before and after the pass key is filled
accordingly by the suffix and prefix filler. The gray box marks the region where the prompt length is within lengths used during original
LLaMA training.

not their position). While this is an important improvement
and facilitates extrapolation to large context lengths, it can
be expected that the performance would be further improved
if the exact indexing method can be used. Unfortunately,
existing proposals limit (or completely disable) attention
to far tokens which defeats our purpose. While we briefly
discuss a possible solution for models with landmark tokens
in Appendix F, we leave a more thorough investigation as
future work. We note that once such method is developed,
it can be directly combined with landmark tokens, yielding
inference capabilities at any length.
Hierarchical Landmarks. In large-scale settings, the
landmark tokens can be stored in k-nearest neighbor data
structures to improve retrieval performance and reduce mem-
ory usage. However, an alternative is to introduce hierarchy
with higher level landmark tokens controlling the attention
to lower level landmarks. In Appendix E, we investigate
adding a special token which acts as a gate to all landmark to-
kens. This token can for example be used to decide whether
a retrieval is necessary. Similarly, this token can be used
at different memory cache levels where high attention to
this token would constitute a cache miss, leading to lookup
in lower-level (and slower) caches. We leave exploration of
possible hierarchical landmark tokens as a future direction.
Training with Cache. For simplicity, in this work we focus
on using the standard training procedure. While we expect
the standard softmax mechanism to closely resemble the
retrieval at inference, given the special indexing scheme,
it is possible that the model would gain additional benefit

from incorporating the cache during training. We leave
investigation of such training variants as a future work.

5 Conclusion

In conclusion, this work presents a novel method for training
attention to retrieve relevant blocks from memory. Unlike
previous methods that rely on recurrence to create memory,
our approach enables direct access to previous tokens, en-
suring accurate information retrieval without the problem of
slowly forgetting past data. We have demonstrated that our
method achieves comparable performance to recurrent meth-
ods such as Transformer-XL while utilizing less computa-
tional resources. Additionally, our attention-based retrieval
process allows for tracking and interpretability, providing
insights into the information used to generate the output.
Importantly, our results highlight the ability of our approach
to handle significantly longer context lengths than those
encountered during training. Moreover, we have shown
that this capability can efficiently be incorporated into ex-
isting pre-trained models through fine-tuning, showcasing
improved retrieval capabilities in the LLaMA 7B language
model. Overall, our method enables efficient inference with
arbitrary context lengths, making it suitable for accessing
large inputs and processing fine-grained information within
the large context.

6

0 5000 10000 15000 20000 25000 30000
Prompt Length (Tokens)

0

20

40

60

80

100

Ac
cu

ra
cy LLaMA 7B

Landmark Finetuning

Retrieval Granularity
•	 Block retrieval can be performed on different levels of granularity.
•	 At the most granular level the set of retrieved blocks can be different for each head and each token.
•	 It is possible to further limit this granularity at

inference, for increased system throughput.
•	 Experiments on PG19 show that reducing

granularity hurts performance but most of the
lost performance can be re-gained by
retrieving more number of blocks.

•	 We use per-head retrieval to reduce the
communication load when off-loading
the key-value cache to CPU.

Combination with Flash Attention
•	 Using Flash Attention’s block size to that of Landmark Attention, the two can be naturally combined.
•	 We provide an open source implementation of this combination in Triton.

Context Miss Token
•	 Landmark Attention’s grouping scheme can be adapted to introduce

additional functionalities.
•	 For example, we show a Context Miss Token can be trained to signal a

need for accessing memory.
•	 Experiments show that using this token around 50% of the

retrievals can be dropped with minor effect on perplexity.

Extrapolating Positional Encoding
•	 Experiments on PG19 (without landmarks) show adding random index

increases after each landmark token help generalization to unseen posi-
tion indices but a fully extrapolating positional encoding is yet to be built.

•	 Such encoding removes the need for stingy position mapping but
Landmark Attention is still needed to reduce the computation cost.

Extensions

Table 2: Performance on PG19 dataset for different levels of retrieval flexibility. The blocks column
shows the theoretical total number of blocks that can be accessed from the memory when feeding the
input in windows of length 250 to the model.

Per Head Per Token Eval. Length k Blocks Perplexity

3 3
2048 2 250 · 8 · 2 15.14
2048 4 250 · 8 · 4 14.92
4096 4 250 · 8 · 4 14.72

3 7
2048 2 8 · 2 15.48
2048 4 8 · 4 15.10
4096 4 8 · 4 14.95

7 3
2048 2 250 · 2 15.44
2048 4 250 · 4 15.04
4096 4 250 · 4 14.89

Granularity of Cache Block Retrieval. Block retrieval can be performed on different levels of
granularity. At the most granular level, the set of retrieved blocks can be different for each head
and each token. This setting is the same as the model experiences during training. However, it
is possible to further limit this granularity at inference, for increased system throughput. In this
section we evaluate the effect of maintaining the same set of retrieved blocks across tokens or across
heads. The results are presented in Table 2 which also shows the total number of retrieved block,
with the same block retrieved by different token or head counted multiple times. While reducing the
flexibility has a noticeable adverse effect on performance, the model still improves over the baseline.
In particular, we note that it is possible to retrieve the same set of blocks for all tokens (which varies
across heads) while only suffering 0.23 points in perplexity. To provide further insights into the
expected improvement in speed gained from using a less flexible selection scheme, we further discuss
the distribution of the retrieved blocks in Appendix C.

4.2 Fine-Tuning Pre-Trained Models

We demonstrate the possibility of fine-tuning a large language model using landmark’s token and
therefore extending the model’s context length. Namely, we fine-tune LLaMA 7B [38] for 15000
steps using our method. To reduce computation, we fine-tune the model with context length 512. We
use the sample subset of RedPajama1 for the fine-tuning which closely follows the dataset curation
process used for training LLaMA.

We evaluate the efficacy of our method by comparing model’s ability to recover a hidden pass phrase
inside a text segment. In particular, we use randomly generated prompts of the format described in
Figure 3a and compute the accuracy of generating the correct pass key (as the first integer within
the first 100 generated tokens). The result is plotted in Figure 3b for different context lengths. We
observe that the base model is capable of finding the pass phrase until a certain lengths, even slightly
exceeding its default training context length of 2048 (the area shared in grey). However, the base
model completely fails at the task for larger contexts. In contrast, our landmark version can always
retrieve the pass phrase with high accuracy, even for significantly larger context lengths. We point
out that when evaluating our model with very large inputs (e.g. 32K), we use additional techniques to
reduce the memory usage by offloading the KV cache (execpt the landmarks) to CPU. We discuss
this in more detail in Appendix G.

5 Future Work
Extrapolating Positional Encoding. One of the obstacles in attaining infinite context length is the
inability of models to attend to context lengths much larger than those they were trained on. In this
work, we provide a special indexing method which can be combined with landmark tokens to bypass
this issue. However, as a result, the model can only attend to tokens that are too far based on their
semantic (and not their position). While this is an important improvement and facilitates extrapolation
to large context lengths, it can be expected that the performance would be further improved if the
exact indexing method can be used. Unfortunately, existing proposals limit (or completely disable)

1https://github.com/togethercomputer/RedPajama-Data

9

Table 3: Performance on PG19 dataset with 2048 evaluation length and k = 4 for different CMT
cutoff thresholds. When the GroupedSoftmax for CMT is below the cutoff threshold, it is set to zero
to emulate not performing a retrieval. The drop rate column shows the ratio of CMT scores below
the cutoff threshold. Baseline refers to the model with landmarks but without CMT. The models are
trained for 60K steps.

Cutoff Perplexity Drop Rate

Baseline 16.28 0%
0.0 16.38 0%
0.1 16.38 23%
0.3 16.43 57%
0.5 16.86 84%
1.0 19.49 100%

500 1000 1500 2000 2500 3000 3500 4000
Prompt Length (Tokens)

20

25

30

35

40

Pe
rp

le
xi

ty

Standard Pos.
ℓjump = 100

Figure 6: Comparison of perplexity on PG19 for different context lengths. The evaluation does
not use the landmark cache and feeds the whole input in a single iteration to the model. Still, the
landmark tokens are inserted every 50 tokens. The context length does not include the additionally
inserted landmark tokens.

information in Transformers to allow them to extrapolate to longer contexts. In the standard positional
encoding, the positions are increased by one at each token, leading to the tokens being assigned
positions 1 to `seq where T is the length of the input. In particular, instead of assigning positions
from 1 to T , where T is the length of the input, we propose to increase the positions of all subsequent
tokens by a random integer between 1 and pjump after each landmark token. We refer to these increases
as making positional jumps. When pjump = 1, no augmentation is applied and the standard positions
are recovered.

To evaluate our proposal, we train the same model that we used in Section 4.1 on PG19 with
pjump = 100. Since we use a context length of 512 for training, each input can has between 10 and 11
landmark tokens. Theoretically, this should allow the model to extrapolate to context lengths as long
as 1100 + 512 = 1612. We plot the performance of the model on different context lengths as well as
the performance of the model with standard positional encoding (i.e. pjump = 1) after 60K steps in
Figure 6. Note that we do not use a cache in this section and feed the whole input at once.

We can see that using the augmentation, the model becomes capable of utilizing longer contexts. This
is evident by the fact that we observe reduction in perplexity as we increase context lengths until 1400
tokens which is close to the theoretical estimate of model’s extrapolation capacity. In contrast, the
decreasing trend stops for the standard model before reaching 1024 tokens. We can also observe that
when evaluating at training context lengths, i.e. 512 tokens, the performance when making positional
jumps is lower than standard training. However, this can be expected and justified since the model is
learning a harder task and therefore may require additional steps to reach the same performance.

17

Paper: Github:

Table 3: Performance on PG19 dataset with 2048 evaluation length and k = 4 for different CMT
cutoff thresholds. When the GroupedSoftmax for CMT is below the cutoff threshold, it is set to zero
to emulate not performing a retrieval. The drop rate column shows the ratio of CMT scores below
the cutoff threshold. Baseline refers to the model with landmarks but without CMT. The models are
trained for 60K steps.

Cutoff Perplexity Drop Rate

Baseline 16.28 0%
0.0 16.38 0%
0.1 16.38 23%
0.3 16.43 57%
0.5 16.86 84%
1.0 19.49 100%

500 1000 1500 2000 2500 3000 3500 4000
Prompt Length (Tokens)

20

25

30

35

40

Pe
rp

le
xi

ty

Standard Pos.
ℓjump = 100

Figure 6: Comparison of perplexity on PG19 for different context lengths. The evaluation does
not use the landmark cache and feeds the whole input in a single iteration to the model. Still, the
landmark tokens are inserted every 50 tokens. The context length does not include the additionally
inserted landmark tokens.

information in Transformers to allow them to extrapolate to longer contexts. In the standard positional
encoding, the positions are increased by one at each token, leading to the tokens being assigned
positions 1 to `seq where T is the length of the input. In particular, instead of assigning positions
from 1 to T , where T is the length of the input, we propose to increase the positions of all subsequent
tokens by a random integer between 1 and pjump after each landmark token. We refer to these increases
as making positional jumps. When pjump = 1, no augmentation is applied and the standard positions
are recovered.

To evaluate our proposal, we train the same model that we used in Section 4.1 on PG19 with
pjump = 100. Since we use a context length of 512 for training, each input can has between 10 and 11
landmark tokens. Theoretically, this should allow the model to extrapolate to context lengths as long
as 1100 + 512 = 1612. We plot the performance of the model on different context lengths as well as
the performance of the model with standard positional encoding (i.e. pjump = 1) after 60K steps in
Figure 6. Note that we do not use a cache in this section and feed the whole input at once.

We can see that using the augmentation, the model becomes capable of utilizing longer contexts. This
is evident by the fact that we observe reduction in perplexity as we increase context lengths until 1400
tokens which is close to the theoretical estimate of model’s extrapolation capacity. In contrast, the
decreasing trend stops for the standard model before reaching 1024 tokens. We can also observe that
when evaluating at training context lengths, i.e. 512 tokens, the performance when making positional
jumps is lower than standard training. However, this can be expected and justified since the model is
learning a harder task and therefore may require additional steps to reach the same performance.

17

