Landmark Attention Random-Access Infinite Context Length for Transformers

Retriever

Sparsity Pattern

Previous Approaches

- Overview

- Attention is the a key component in the highly successful Transformer architecture.
- However, it has a quadratic computational cost, limiting the input (context) length.
- · Previous approaches to alleviate this cost sacrifice Attention's random-access flexibility.
- We propose Landmark Attention to allow the attention itself to be used for retrieval, maintaining its random access flexibility

_andmark Attention

- We break the input into **blocks of fixed length** and introduce a special token for each block, called a landmark, which acts as a gate for attending to its corresponding block.
- The gating mechanism is controlled by the attention score to the landmark token. • At inference time, we compute the attention scores of the landmarks and retrieve the blocks corre-
- sponding to the highest scoring landmarks (active gates), integrating them into the attention. • Our proposed approach maintains the random-access flexibility of attention and offers an alternative solution to the recurrent memory approaches.

- First, break the input into chunks and augment the sequence by landmark tokens. Each chunk contains multiple blocks.
- The chunks are iteratively fed to the model from the beginning to the end.
- When processing each chunk at each layer, for each token we first compute the attention score to the landmark tokens currently in the cache.
- We only compute the attention score to tokens in the blocks of the top k high scoring landmarks.
- This is a close approximation to training as tokens in blocks with low scoring landmarks will not receive a high weight anyway.
- The performance can be further improved by using nearest neighbor data structures.
- Computation cost is immediately improved by a factor of the block size (**50x speedup** in this work).
- The chunk size can be chosen smaller than the training context size to decouple training and inference context lengths.

Stingy Position Mapping

- Challenge: Transformers are unable to extrapolate to position indices not observed during training.
- Previous methods proposed to alleviate this flaw usually penalize or prevent attention to long distance tokens.
- Instead we propose a special approximate position mapping scheme called stingy position mapping.
- The position mapping maintains the position of the last k blocks but maps all earlier blocks to the same position.
- The retrieved blocks are prepended in order to the current chunk with an empty block separating retrieved blocks in the last k blocks from earlier ones.

Machine Learning and Optimization Laboratory

Landmark Attention

- Mostly standard training procedure is used except for the following changes:
- \Box Landmark tokens are inserted every after every l_{block} tokens. □ GroupedSoftmax is used to compute Softmax in groups.
- □ A special grouping scheme imposes a hierarchy leading to the gating mechanism that can be used for retrieval.

Landmark Attention

· Given the vector of dot products v and grouping g, the grouped softmax is computed as:

$$\sigma_G(\mathbf{v}, \mathbf{g})_i := \text{GroupedSoftmax}(\mathbf{v}, \mathbf{g})_i$$

- For each block, we create a separate group and put its regular (non-landmark) tokens in that group.
- When computing the attention weights for the i-th token, landmark tokens for other blocks are placed in the same group as the i-th token.
- The landmark token for the i-th token's block is ignored when computing the attention weights for the i-th token.
- Using the above grouping, the attention weight for each token can be computed as the product of the token's attention weight and it's corresponding landmark token's attention weight.
- Under this scheme, the attention weights sum to one same as in the standard Softmax function.
- Since tokens in the same block and the landmark tokens share the Softmax group, the model has to choose between attending to other blocks and current tokens.
- Intuitively, the grouping forces the model to only attend to relevant blocks because of this trade-off.

i	0	1	2	3	4	5	6	7
$ ext{mask} + rac{Q_6^T K}{\sqrt{d_{ ext{hand}}}}$	1	1	1	1	1	1	1	mask
V ^u head								
p_i	2	2	2	5	5	5	8	8
$G_{6,j}$	2	2	8	3	3	8	8	8
${S}_{6,j}$	0.5	0.5	0.33	0.5	0.5	0.33	0.33	0
$W_{6,j}$	0.167	0.167	0	0.167	0.167	0	0.33	0

Language Modeling

Eval. Length	ℓ_{local}	XL cache	♥ Blocks	k	Attention Size	PG19	arXiv		
512	512	None	None	-	512	16.12	4.01	Decolino	
	360	None None		-	360	16.76	4.31	Dasenne	
	250	None	10	2	360	16.23	4.01	Ours	
	256	256	None	-	512	14.72	-	[9]	
2048	250	None	40	2	360	15.14	3.43		
	350		40	2	460	15.07	3.41	Ours	
	300	None	40	3	460	14.97	3.36	Ours	
	250	None	20	4	460	15.02	3.37		
	250	None	40	4	460	14.92	3.35		
4096	256	256	None	-	512	14.55	-	[9]	
	250	None	40	4	460	14.79	3.19		
	250	None	80	2	370	15.00	3.29	Ours	
	250	None	80	4	470	14.72	3.18		

- We train a 12-layer decoder-only Transformer with 8 heads and 128 hidden dimension on language modeling tasks.
- In particular, we consider perplexity on PG-19 dataset and math papers from arXiv.
- Results demonstrate that Landmark Attention allows inference at much larger context lengths than training context length.
- The performance at the larger context length is comparable to a Transformer-XL trained directly at the larger context lengths on PG-19.

- LLaMA 7B is originally trained at 2048 context length
- its performance on much larger context lengths.

Pass Key Retrieval Task

- The task is to find a pass phrase hidden in a long piece of text.
- Instances of this task are generated by randomly choosing the pass key (a number between 1 and 50000) as well as its location.
- Prefix and suffix strings filled with a repetitive text are added to the pass key to ensure the desired length.
- We use the success rate as the evaluation metric.

Evaluation

- The original model fails to retrieve the pass key and even runs out of memory as the prompt gets longer (marked with a red cross)
- In contrast, the fine-tuned model using landmarks can successfully identify the pass key with a high success rate for contexts with over 32k tokens.
- The results demonstrate that our method can be successfully used even during fine-tuning to extend the context length limit to arbitrary large values.
- For very large context lengths, e.g. 32k, to avoid running out of memory, we use the capability offered by landmark attention allowing us to offload the majority of the key-value cache to CPU (a green star marks this mechanism's deployment).

Retrieval Granularity

- Block retrieval can be performed on different levels of granularity.
- It is possible to further limit this granularity at inference, for increased system throu
- Experiments on PG19 show that reduced granularity hurts performance but mo lost performance can be re-gained by retrieving more number of blocks.
- We use per-head retrieval to reduce communication load when off-loading the key-value cache to CPU.

Combination with Flash Attention

- We provide an open source implementation of this combination in Triton.

Context Miss Token

- Landmark Attention's grouping scheme can be adapted to introduce additional functionalities.
- For example, we show a Context Miss Token can be trained to signal a need for accessing memory.
- Experiments show that using this token around 50% of the retrievals can be dropped with minor effect on perplexity.

Extrapolating Positional Encoding

- Experiments on PG19 (without landmarks) show adding random index increases after each landmark token help generalization to unseen position indices but a fully extrapolating positional encoding is yet to be built.
- Such encoding removes the need for stingy position mapping but Landmark Attention is still needed to reduce the computation cost.

LLaMA 7B 32k

• We fine-tune LLaMA 7B using our method and develop the pass key retrieval task to benchmark

There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there. <prefix filler by continuously repeating: The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.> The pass key is <PASS KEY>. Remember it. <PASS KEY> is the pass key. <suffix filler> What is the pass key? The pass key is 100 -

Extensions

• At the most granular level the set of retrieved blocks can be different for each head and each token.

iahout	Per Head	Per Token	Eval. Length	k	Blocks	Perplexity	
			2048	2	$250\cdot 8\cdot 2$	15.14	
ucing	\checkmark	\checkmark	2048	4	$250 \cdot 8 \cdot 4$	14.92	
ost of the			4096	4	$250\cdot 8\cdot 4$	14.72	
			2048	2	8 · 2	15.48	
у	\checkmark	×	2048	4	$8 \cdot 4$	15.10	
			4096	4	8 · 4	14.95	
the			2048	2	$250 \cdot 2$	15.44	
	×	\checkmark	2048	4	$250 \cdot 4$	15.04	
)			4096	4	$250 \cdot 4$	14.89	

• Using Flash Attention's block size to that of Landmark Attention, the two can be naturally combined.

