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Overview

Attention is the a key component in the highly success- | retrever Sparsiy
ful Transformer architecture.

However, it has a quadratic computational cost, limiting Xﬁm
the input (context) length. ¥ ¥ v ‘
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Previous approaches to alleviate this cost sacrifice At-

tention’s random-access flexibility.

We propose Landmark Attention to allow the attention
itself to be used for retrieval, maintaining its random access flexibility.
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We break the input into blocks of fixed length and introduce a special token for each block, called a
landmark, which acts as a gate for attending to its corresponding block.

The gating mechanism is controlled by the attention score to the landmark token.

At inference time, we compute the attention scores of the landmarks and retrieve the blocks corre-
sponding to the highest scoring landmarks (active gates), integrating them into the attention.

Our proposed approach maintains the random-access flexibility of attention and offers an alternative
solution to the recurrent memory approaches.
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Inference
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Processing ————>»

First, break the input into chunks and augment the sequence by landmark tokens.
Each chunk contains multiple blocks.

The chunks are iteratively fed to the model from the beginning to the end.

When processing each chunk at each layer, for each token we first compute the attention score to
the landmark tokens currently in the cache.

We only compute the attention score to tokens in the blocks of the top k high scoring landmarks.

This is a close approximation to training as tokens in blocks with low scoring landmarks will not
receive a high weight anyway.

The performance can be further improved by using nearest neighbor data structures.
Computation cost is immediately improved by a factor of the block size

(50x speedup in this work).

The chunk size can be chosen smaller than the training context size to

decouple training and inference context lengths.
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Challenge: Transformers are unable to extrapolate to position indices not observed during training.

Previous methods proposed to allevi-
ate this flaw usually penalize or pre-

Memor a c e g i
vent attention to long distance tokens. - ég v Q\d‘zf 1“ QJ'
Instead we propose a special approxi- ¢ ldl9c \T o lr s
mate position mapping scheme called 11 lo S TR
stingy position mapping.
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position of the last k blocks but maps i ]9 c|d|Vile|f|9F plafr|s
all earlier blocks to the same position. o lalr|s glnl@lilifelnolalr]s

The retrieved blocks are prepend- New Input
ed in order to the current chunk with

an empty block separating retrieved

blocks in the last k blocks from earlier ones.

Final Attention Position Mapping
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Training
* Mostly standard training procedure is used except for the following changes: MatMul
o Landmark token is added to the vocabulary, increasing the size by one. ‘f‘ A
o Landmark tokens are inserted every after every o tokens. GroupedSoftmax
A
0 GroupedSoftmax is used to compute Softmax in groups. Mask (0p0)
0 A special grouping scheme imposes a hierarchy leading to the gating A
mechanism that can be used for retrieval. Scale
A
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Given the vector of dot products v and grouping g, the grouped softmax is
computed as:
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index of landmark token
corresponding to i-th token’s block

oa(v,g); := GroupedSoftmax(v, g); :=

For each block, we create a separate group and put its D; —
regular (non-landmark) tokens in that group.

When computing the attention weights for the i-th token, landmark (
tokens for other blocks are placed in the same group as the i-th token.

The landmark token for the i-th token’s block is ignored when computing .
the attention weights for the i-th token. -1 pi=
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Using the above grouping, the attention weight for each token can be o
computed as the product of the token’s attention weight and it’s
corresponding landmark token’s attention weight.

Under this scheme, the attention weights sum to one same as in the \
standard Softmax function.

Since tokens in the same block and the S. .
landmark tokens share the Softmax group, "
the model has to choose between attending

to other blocks and current tokens.

Intuitively, the grouping forces the model to (0 pj =7
only attend to relevant blocks because of .
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this trade-off. _
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p;  otherwise

SoftmaxScore(Q, K);
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LLaMA 7B 32k

« LLaMA 7B is originally trained at 2048 context length.
» We fine-tune LLaMA 7B using our method and develop the pass key retrieval task to benchmark

its performance on much larger context lengths.

Pass Key Retrieval Task

* The task is to find a pass phrase
hidden in a long piece of text.

* Instances of this task are generated
by randomly choosing the pass key
(a number between 1 and 50000) as
well as its location.

 Prefix and suffix strings filled with a
repetitive text are added to the pass
key to ensure the desired length.

 \We use the success rate as the
evaluation metric.

There 1s an important 1nfo hidden inside

a lot of irrelevant text. Find it and
memorize them. I will quiz you about the
important information there.

<prefix filler by continuously repeating:
The grass 1s green. The sky 1s blue. The
sun 1s yellow. Here we go. There and back
again.>

The pass key 1s <PASS KEY>. Remember 1t.
<PASS KEY> 1s the pass key.

<suffix filler>

What i1s the pass key? The pass key 1is

Evaluation

* The original model fails to retrieve the pass
key and even runs out of memory as the

prompt gets longer (marked with a red 1001 &g &

Cross)
» In contrast, the fine-tuned model using land- 80

marks can successfully identify the pass key

with a high success rate for con- g e LaMATE

texts with over 32k tokens. g L0 Landmark Finetuning
* The results demonstrate that our meth-

od can be successfully used even during 20

fine-tuning to extend the context length limit

to arbitrary large values. . | .

* For very large context lengths, e.g. 32k, to
avoid running out of memory, we use
the capability offered by landmark attention

allowing us to offload the majority of
the key-value cache to CPU

(a green star marks this mechanism’s deployment).
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Language Modeling

Eval. Length  /,c.y XL cache @ Blocks £ Attention Size PG19 arXiv

512 None None - 512 16.12 4.01 Baseli
512 360  None None ; 360 16.76 431 aseline
250 None 10 2 360 16.23 4.01 Ours
256 256 None - 512 1472 - [9]
250 None 40 2 360 15.14 343
2048 350 None 40 2 460 15.07 3.41 Ours
300 None 40 3 460 14.97 3.36 u
250 None 20 4 460 15.02 3.37
250 None 40 4 460 14.92 3.35
256 256 None - 512 14.55 - [9]
4096 250 None 40 4 460 14.79 3.19
250 None &0 2 370 15.00 3.29 Ours
250 None 80 4 470 14.72 3.18

We train a 12-layer decoder-only Transformer with 8 heads and 128 hidden dimension on
language modeling tasks.

In particular, we consider perplexity on PG-19 dataset and math papers from arXiv.

Results demonstrate that Landmark Attention allows inference at much larger context lengths than
training context length.

The performance at the larger context length is comparable to a Transformer-XL trained directly at
the larger context lengths on PG-19.

Extensions

Retrieval Granularity

 Block retrieval can be performed on different levels of granularity.
« At the most granular level the set of retrieved blocks can be different for each head and each token.

* It is possible to further limit this granularity at
inference, for increased system throughput.

Per Head Per Token Eval. Length £k Blocks Perplexity

_ _ 2048 2 250-8-2  15.14

« Experiments on PG19 show that reducing v v 2048 4 250-8-4 1492
granularity hurts performance but most of the 4096 4 20-8-4 1472

: 2048 2 8.2 15.48

Iost_ pe_rformance can be re-gained by s X 5018 4 a.d =10
retrieving more number of blocks. 4096 4 8.4 14.95

« We use per-head retrieval to reduce the y , %832 i %28 :i g-gj
communication load when off-loading 4096 4 9250.4 14.89

the key-value cache to CPU.
Combination with Flash Attention

« Using Flash Attention’s block size to that of Landmark Attention, the two can be naturally combined.
* We provide an open source implementation of this combination in Triton.

Context Miss Token

« Landmark Attention’s grouping scheme can be adapted to introduce
additional functionalities.

Cutoff  Perplexity Drop Rate

_ _ . Baseline 16.28 0%

» For example, we show a Context Miss Token can be trained to signal a 0.0 16.38 0%
- 0.1 16.38 23%

need for accessing memory. o it e
 Experiments show that using this token around 50% of the (1’-8 igig v

retrievals can be dropped with minor effect on perplexity.
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« Experiments on PG19 (without landmarks) show adding random index
increases after each landmark token help generalization to unseen posi- |
tion indices but a fully extrapolating positional encoding is yet to be built. "~z

« Such encoding removes the need for stingy position mapping but

Extrapolating Positional Encoding
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Landmark Attention is still needed to reduce the computation cost.
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