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1 What type of learning

Environment: MDP, unknown dynamics, unknown cost

INPUT: A finite set of expert demonstrations

GOAL: Learn a policy that performs at least as good as the expert

2 Markov decision processes (MDPs)

◦ Markov decision model Mc ≜ (X ,A, P , γ, ν0, c)

◦ P (x′|x, a) = Prob (xt+1 = x′|xt = x, at = a) ,

◦ Π0 set of stationary Markov policies π, π(a|x) =
Prob (at = a|xt = x) ,

◦ ν0 ∈ ∆S initial state distribution, c ∈ R|S||A| cost function,
γ ∈ (0, 1) discount factor.

◦ at ∼ π(·|xt); xt+1 ∼ P (·|xt, at); c(xt, at)

◦ Occupancy measure µπ induced by a policy

µπ(x, a) := (1− γ)
∞∑
t=0

γtP (xt = x, at = a|x0 ∼ ν0, π)

- Minimize a cost criterion

min
π∈Π

ρc(π), where ρc(π) ≜ (1− γ)Eπ
ν0

[ ∞∑
t=0

γtc(xt, at)

]
.

- LP formulation
min

µ∈R|S||A|
max
c∈C

⟨µ− µπE
, c⟩

s.t. E⊺µ = (1− γ)ν0 + γP ⊺µ, µ ≥ 0.
(Primal IL)

- Linear MDP assumption There exists mappings ϕ : X ×A → Rm

and g : X → Rm and a vector w ∈ W := {w ∈ Rm : ∥w∥2 ≤ 1} such
that

c(s, a) = ⟨ϕ(s, a), w⟩ P (s′|s, a) = ⟨ϕ(s, a), g(s′)⟩

that is, in matrix form

c = Φw P = ΦM

3 The constraint splitting trick
• We plug in the (Linear MDP) structure in (Primal IL) as follows. A similar trick appeared outside the imitation learning in in (Mehta and

Meyn, 2020), (Lee and He, 2019) and (Bas-Serrano et al., 2021).

min
µ∈R|S||A|

max
w∈W

⟨µ− µπE ,Φw⟩

s.t. E⊺µ = (1− γ)ν0 + γM⊺Φ⊺µ
⇒

min
λ∈∆m,µ∈RX×A

max
w∈W

〈
λ− ΦTµπE , w

〉
s.t. ETµ− γMTλ = (1− γ)ν0

ΦTµ = λ (Primal′ IL)
• Our algorithm consists in applying inexact proximal point updates for µ and λ on the Lagrangian of Primal′ IL.

4 The algorithm
Proximal Point Imitation Learning: P2IL
Initialize π0 as uniform distribution over A
for k = 1, . . .K do

Policy evaluation :
(wk, θk) ≈ argmaxw∈W,θ∈ΘGk(w, θ)

Policy improvement :
πk(a|s) ∝ πk−1(a|s) e−αQθk

(s,a)

Where Gk(w, θ) is called (negative) logistic Bellman error (Bas-Serrano
et al., 2021) and it is the following concave and smooth function. a

− 1

η
log

m∑
i=1

(ΦTµk−1)(i)e
−ηδkw,θ(i) + (1− γ)

〈
ν0, V

k
θ

〉
−

〈
λπE

,ΦTw
〉
,

aWe use δkw,θ ≜ w + γMV k
θ − θ and V k

θ ≜ − 1
α
log

(∑
a πµk−1 (a|s)e−αQθ(s,a)

)
and Qθ = Φθ.

Theorem 1 (Resources Guarantees) Let us define the C-distance between π and πE, dC(π, πE) ≜ maxc∈C
(
ρc(π) − ρc(πE)

)
. Using

Ω (KT ) = Ω
(
ϵ−5

)
sample transitions, Ω

(
ε−2

)
expert trajectories and approximately solving Ω

(
ϵ−1

)
concave maximization problems, we can

ensure dC(π̂, πE) ≤ O(ϵ+ ε), with high probability.

◦ We consider errors in the maximization of Gk(w,θ), i.e. ϵk = Gk(w
⋆
k, θ

⋆
k)− Gk(wk, θk).

◦ First, we show how errors propagate. Second, we control that the errors are small using a Biased Stochastic Gradient Ascent subroutine.

5 Discrete Actions Experiments
• From the left to right: WideTree, RiverSwim, SingleChain, Dou-

bleChain, Cartpole, Two State, Gridworld and Acrobot.
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6 Continuous Control Experiments
• From the left to right: HalfCheetah, Ant, Hopper, Walker .
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• Nonlinear function approximation and continuous actions are not
covered by our theory.

• However the empirical performance is convincing vs the state-of-
the-art IQLearn (Garg et al., 2021).

Full paper


