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Sampling-Based AQP in Modern Analytical Engines
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Sampling in the critical path of execution

Interactive analytics is an elusive goal

Scan-SUM query, in-memory (3 cols), 48 threads
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AQP + modern systems = faster analytics Modern analytics require hardware-consciousness

Common operations and access patterns

Sampling operator design

Random number generation (RNG) throughput
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Just-in-time sampling triggered by query operators Data: infrequent updates

Match the throughput of corresponding relational operators

Better cache locality

Goal: low overhead side-effect of query execution Co-design the physical operators with algorithms

Exposing the bottlenecks: sampling inside an in-memory scale-up analytical engine
Setup: dual socket Intel Xeon Gold 5118 (2x12 cores), 384GB RAM Data: SSB with 600M (SF100) and 6B (SF1000) tuples in fact table, 1 binary column has ~2.3/23GB

Rejection sampling vs filter on (1) and (2) columns Reservoir Sampling vs Scan-Reduce query Stratified Sampling vs Scan-GroupBy query
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SF1000 10% Sample 1% Sample ~ SF100 Sampling-based AQP is viable in modern engines
(100% data) (online sampling) (offline 10%)
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