
Concord: An Efficient Runtime for
Microsecond-Scale Datacenter Applications

Rishabh Iyer Musa Unal Marios Kogias George Candea

Problem: Datacenter OSes that optimize application tail-latency sacrifice max throughput and generality

Concord co-designs applications and the runtime

Ø Compiler-enforced cooperation eliminates interrupts
Ø Instrumentation to periodically poll dedicated cache line
Ø Dispatcher initiates preemption by writing to cache line

Ø Join Bounded Shortest Queue (JBSQ) scheduling
Ø Bounded core-local queues, eliminates coherence stalls

Ø Work stealing dispatcher contributes to goodput
Ø Dispatcher begins processing requests if all workers are busy

Google’s LevelDB
Ø Workload: 50% GETs, 50% SCANs.
Ø GETs take 600ns, SCANs take 600µs

Ø Key-value store is populated with 1500 unique keys

Approximating---not implementing canonically---theoretically optimal scheduling
significantly improves system throughput at µs-scale at negligible tail-latency costs

Microbenchmarks
Ø Program that spins for duration specified by request
Ø Can evaluate multiple service time distributions

Ø Measure throughput sustained for a target slowdown
Ø Ratio of the total sojourn time to the service time.

Ø E2E latency impacts revenue for online services
Ø Amazon loses $1M for every 100ms increase in latency

Ø Datacenter services have large RPC fan-outs
Ø E2E latency determined by slowest individual response

Online services place stringent demands on the
tail-latency of individual nodes with µs-scale service times

… … …

…

HTTP/2 GET:
“News Feed”

Request User
& Friends

Get All
Updates

Solution: Concord, an efficient, general scheduling runtime immediately deployable on the public cloud

Evaluation: Concord improves application throughput by 18-83% for a given tail-latency SLO

Ø Three key sources of overhead:
Ø Hardware interrupts for precise preemption
Ø Cache coherence stalls due to a physical single queue
Ø Dedicated dispatcher thread that doesn’t contribute to goodput

Ø OSes sacrifice generality or deployability to recover throughput

Scheduling policies that optimize tail-latency incur
significant system throughput overheads at µs-scale

Key insight: Approximate theoretically optimal scheduling policies to reduce system overheads

1
2

3

4

Concord supports 18-83% greater throughput than state-of-the-art datacenter OSes (Shinjuku [NSDI’19], Persephone [SOSP’21])

Unlike state-of-the-art datacenter OSes, Concord does not rely on application-level assumptions or non-standard use of hardware

N
I
C

Worker
Core

.......

$

$

$

Dedicated cache line

Bounded local queue

Dispatcher
Core

Request processed by
dispatcher at high system load

Global single queue

Worker
Core

Worker
Core

1

2

3

4

