Concord: An Efficient Runtime for

Microsecond-Scale Datacenter Applications

=PrL

Imperial College
London

Rishabh lyer Musa Unal Marios Kogias George Candea

Problem: Datacenter OSes that optimize application tail-latency sacrifice max throughput and generality

Online services place stringent demands on the Scheduling policies that optimize tail-latency incur
tail-latency of individual nodes with ps-scale service times sighificant system throughput overheads at ps-scale
» E2E latency impacts revenue for online services » Three key sources of overhead:
» Amazon loses $1M for every 100ms increase in latency » Hardware interrupts for precise preemption
» Datacenter services have large RPC fan-outs » Cache coherence stalls due to a physical single queue
» E2E latency determined by slowest individual response » Dedicated dispatcher thread that doesn’t contribute to goodput

» OSes sacrifice generality or deployability to recover throughput

Request User]

Get All
& Friends

[——=\ [Updates

100.00

HTTP/2 GET:
“News Feed”

- No tail-latency optimizations
- Tail-latency optimizations
- Target behavior

75.00

50.00

25.00

3o) D -+~)

Overhead of existing OSes (%)

Do
Do -0

Tail Latency

0.00

1us 2us 3us 4us 5us

Load Scheduling quantum (ps)

Solution: Concord, an efficient, general scheduling runtime immediately deployable on the public cloud

Key insight: Approximate theoretically optimal scheduling policies to reduce system overheads

Concord co-designs applications and the runtime

» Compiler-enforced cooperation eliminates interrupts

€ Instrumentation to periodically poll dedicated cache line
@) Dispatcher initiates preemption by writing to cache line | Corisingte queve
Dispatcher

» Join Bounded Shortest Queue (JBSQ) scheduling . [TT1] Core

@ Bounded core-local queues, eliminates coherence stalls k Dedicated cache line ="
» Work stealing dispatcher contributes to goodput]| Worker

(4, Dispatcher begins processing requests if all workers are busy Request processed by © 1711 Core

dispatcher at high system load

Bounded local queue

Unlike state-of-the-art datacenter OSes, Concord does not rely on application-level assumptions or non-standard use of hardware

Evaluation: Concord improves application throughput by 18-83% for a given tail-latency SLO

Microbenchmarks Google’s LevelDB
» Program that spins for duration specified by request » Workload: 50% GETs, 50% SCAN:E.
» Can evaluate multiple service time distributions » GETs take 600ns, SCANs take 600pus
» Measure throughput sustained for a target slowdown » Key-value store is populated with 1500 unique keys

» Ratio of the total sojourn time to the service time.

. Persephone-FCFS ® Shinjuku ® Concord
Persephone-FCFS m Shinjuku m Concord

200
200 |

(-

s g
@) © 150
'g 150 5
° ®
h (D)
IS = 100
g S
8 o
104 Q
2 50 s 0 / 4/"'/
= (@)
(@) d
3 |I—l—l——l——"‘ PR S 0

0

0 50 100 150 200 250 0 10 20 30 40 50

Load (kRps) Load (kRps)

Concord supports 18-83% greater throughput than state-of-the-art datacenter OSes (Shinjuku [NSDI'19], Persephone [SOSP’21])

Approximating---not implementing canonically---theoretically optimal scheduling

significantly improves system throughput at ps-scale at negligible tail-latency costs

