DSMage: BlackBox Far-memory Aware

Scalable Data Structures
Yueyang Pan, Sanidhya Kashyap

=PrL RS3Lab

GOAL: Provide a framework for the non data-centric developers to write application in low-level
languages and in a single-threaded way. The framework automatically provides scalability on
heterogeneous memory with correctness guarantee.

Motivation
Hardware: Software:
° Variable Workload
s DRAM ~80ns o Write heavy
£ o Highly Skewed
ox ~130ns o Large Size [KB]
2os Remote i us c o Diurnal Rattern
O L e ° oncurrency bugs in popular

open source
- Can we help developers to cover the both situation?

Challenges
1. Semantic Preserving
2. Workload Patterns
3. Heterogeneous Latency
Design
Compiler PaSS (TEANSACTIONisTART();
#pragma cs { TRY_LOCK(rlu_data, &prev):
- ~ TRY_LOCK(rlu_data, &next);
new_node->value = key; . - -
I . new_nod t= cur; /n\esv;Tg:ﬂePT;a?Irﬁaak‘ea).l‘&(new,node»next), next);
) - 1 ASSIGN_PTR(rlu_data, &(prev->next), new_node);
Low-level TRANSACTION_END()
©)
J

[
2 Runtime *

Transaction Interface
(Multiversion)

Thread Library
(Coroutine / Configurable Scheduling)

/ Unified Object Identifier

3
y

Feedback
Layout GC Policy (Reclaim & Swap)

Device Management layer

Exploring Direction
Currently focusing on 2 first as a base => A scalable transactional synchronization on RDMA

1. What is the performance of existing synchronizations if there objects can be in Far Memory
using existing approaches (w.r.t r/w ratio, skewness, object size)
2. Prototype design choices: - - synchronization overhead, + + local object access
a Object Placement: temporal objects, non temporal objects

b. Elastic Log Space: on-demand log space allocation
c. GC Design: Opportunistic GC, Pessimistic GC; (De)couple GC
d. Cooperative Scheduling: Latency hiding




