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GOAL: Provide a framework for the non data-centric developers to write application in low-level
languages and in a single-threaded way. The framework automatically provides scalability on
heterogeneous memory with correctness guarantee.

Motivation
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- Can we help developers to cover the both situation?

Challenges
1. Semantic Preserving
2. Workload Patterns
3. Heterogeneous Latency
Design
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Layout GC Policy (Reclaim & Swap)

Device Management layer

Exploring Direction
Currently focusing on 2 first as a base => A scalable transactional synchronization on RDMA

1. What is the performance of existing synchronizations if there objects can be in Far Memory
using existing approaches (w.r.t r/w ratio, skewness, object size)
2. Prototype design choices: - - synchronization overhead, + + local object access
a Object Placement: temporal objects, non temporal objects

b. Elastic Log Space: on-demand log space allocation
c. GC Design: Opportunistic GC, Pessimistic GC; (De)couple GC
d. Cooperative Scheduling: Latency hiding




