
Motivation
Hardware: Software:

● Variable Workload
○ Write heavy
○ Highly Skewed
○ Large Size [KB]
○ Diurnal Pattern

● Concurrency bugs in popular
open source

- Can we help developers to cover the both situation?

DSMage: BlackBox Far-memory Aware
Scalable Data Structures

Yueyang Pan, Sanidhya Kashyap

Challenges
1. Semantic Preserving
2. Workload Patterns
3. Heterogeneous Latency

GOAL: Provide a framework for the non data-centric developers to write application in low-level
languages and in a single-threaded way. The framework automatically provides scalability on
heterogeneous memory with correctness guarantee.

Design

Exploring Direction
Currently focusing on 2 first as a base => A scalable transactional synchronization on RDMA

1. What is the performance of existing synchronizations if there objects can be in Far Memory
using existing approaches (w.r.t r/w ratio, skewness, object size)

2. Prototype design choices: - - synchronization overhead, + + local object access
a. Object Placement: temporal objects, non temporal objects
b. Elastic Log Space: on-demand log space allocation
c. GC Design: Opportunistic GC, Pessimistic GC; (De)couple GC
d. Cooperative Scheduling: Latency hiding

#pragma cs {
 ...
 new_node->value = key;
 new_node->next = cur;
 ...
}

{
 TRANSACTION_START();
 ...
 TRY_LOCK(rlu_data, &prev);
 TRY_LOCK(rlu_data, &next);
 new_node->value = key;
 ASSIGN_PTR(rlu_data, &(new_node->next), next);
 ASSIGN_PTR(rlu_data, &(prev->next), new_node);
 ...
 TRANSACTION_END()
}

Transaction Interface
(Multiversion)

 Memory Runtime

Device Management layer

Compiler Pass

Unified Object Identifier

GC Policy (Reclaim & Swap)Layout

Low-level
(C)

Runtime

Thread Library
(Coroutine / Configurable Scheduling)

DRAM ~80ns

CXL ~130ns

Remote ~1.5us

Stats

Feedback

