

Low-Rank Subspaces for Unsupervised Entity Linking

Akhil Arora (akhil.arora@epfl.ch), Alberto García Durán, and Robert West Data Science Laboratory (DLAB), EPFL

Fundamental NLP task with many applications

- Information extraction
- Automatic KB construction
- Enabling network navigation

How is Entity Linking Performed?

Dictionaries/alias-tables for high-quality candidate generation

Candidate Entity	Prior P(e m)
Michael_Jordan	0.997521
Michael_IJordan	0.000826
Michael_Jordan_statue	0.000826
Michael_Jordan_(footballer)	0.000826

- Supervised learning via informative features
 - > Prior
- Local/Global context
- Sophisticated models on labelled data
 - XGBoost
- Deep neural networks

Unaddressed Research Questions

- Absence of annotated/labelled training data
- Ability to operate at Web Scale

Relationship between Eigenthemes and Gold Entities **Gold Entities** Other Candidate Entities Coordinates -0.0 -1.0 -0.0 -0.0 0.0 0.6 0.4 0.2 0.0 0.0 0.2 0.0 -0.250.00 -0.2PC1 Coordinates

Results: CoNLL Dataset

Category	Method	Precision@1			MRR		
cutegory	1viculou	Overall#	Easy	Hard	Overall#	Easy	Hard
Existent Existent	NAMEMATCH (Riedel et al., 2010) τ MIL-ND (SoTA) (Le and Titov, 2019)	0.412 0.451 ± 0.019	0.645 0.700 ± 0.032	$0.174 \\ 0.187 \pm 0.006$	0.415 0.539 ± 0.017	0.645 0.777 ± 0.029	0.184 0.353 ± 0.005
Proposed Proposed Proposed	LOCAL CTXT GLOBAL CTXT DEGREE	0.296 0.303 0.571	0.420 0.403 1.0 [†]	0.223 0.289 0.0	0.401 0.423 0.649	0.537 0.542 1.0 [†]	0.374 0.448 0.312
Proposed Proposed	AVG WτMIL-ND	0.488 0.499 ± 0.022	0.658 0.778 ± 0.037	$0.445 \\ 0.217 \pm 0.008$	0.593 0.592 ± 0.018	0.756 0.853 ± 0.030	0.636 0.415 ± 0.007
Proposed	EIGEN	0.617^\dagger	0.858	0.500^\dagger	0.690^\dagger	0.910	0.674^{\dagger}
-	Ceiling	0.824	1.0	1.0	0.824	1.0	1.0

Indicates statistical significance (p < 0.01) between the best and the second-best method using the Student's paired t-test.

We observe the Verall is computed by considering all mentions (including Not-found in addition to Easy and Hard).

Unsupervised Entity Linking

- Absolute "absence" of annotated data
 - Specialized domains: medicine, law, etc.
 - Proprietary KGs
- Accessible resources:
 - List of entity names, or "aliases"
 - Reference KB

Challenges

- No module can make use of annotated data!
 - Candidate generator using dictionaries
 - Features (e.g. prior probability)
 - X Aligned entity and mention embeddings
 - Training supervised models

