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Ship your Critical Section Not Your Data: 
Enabling Transparent Delegation with TCLocks

Existing lock design: Either no locality of shared data or require application modification

Traditional lock design: Move data to computation Delegation-style lock design: Move computation to data

Traditional lock design: No locality of shared data Delegation-style lock design: Requires application rewrite
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TCLocks: Provide minimal shared data movement without application modification
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TCLocks provides locality for shared data without application modification

● How to capture the thread’s context?
○ Instruction pointer + stack pointer + general-purpose registers

● Where to capture the thread’s context?
○ Start and end of lock/unlock API

● Does the waiter’s thread modify its context?
○ No, lock waiter busy waits to acquire the lock
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● Within a socket:
○ Minimal shared data movement

● Across socket:
○ NUMA-aware policy

User-space: LevelDB

5.2x

1 socket  > 1 socket

Kernel-space: FxMark
● Algorithmic support:

○ Delegation-based blocking lock 
○ Phase-based reader-writer lock
○ NUMA-aware policy

● Lock usage:
○ Nested locking
○ OOO unlocking
○ Special execution contexts
○ per-CPU variables

● Performance optimization:
○ Reduced context-switch 

overhead
○ Stack prefetching

fs/dcache.c
// Update the dcache to reflect the 
move of a file name
static void __d_move(struct dentry *dentry, 
struct dentry *target, bool exchange) {
   …………….
   spin_lock(&target->d_parent->d_lock);
   spin_lock_nested(&old_parent->d_lock, 1);
   spin_lock_nested(&dentry->d_lock, 2);
   spin_lock_nested(&target->d_lock, 3);
 
   ……….critical section…………..

   spin_unlock(&target->d_parent->d_lock);
   spin_unlock(&old_parent->d_lock);
   spin_unlock(&target->d_lock);
   spin_unlock(&dentry->d_lock);
}

Phase 1: All threads Phase 2: Server thread

Benchmark: Each thread enumerates files in a directory, 
serialized by a directory lock

Benchmark: Key-value store, threads contend on the 
pthread lock

FxMark-MRDM benchmark: Each thread enumerates files in a directory, serialized by a directory lock

Existing lock design:

❏ Use traditional 
lock/unlock APIs

❏ Require 
movement of 
shared data

Existing lock design:

❏ Provide locality 
for shared data

❏ Require 
application 
rewrite
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