
Vishal Gupta Kumar Kartikeya Dwivedi Yugesh Kothari
Yueyang Pan Diyu Zhou Sanidhya Kashyap

Ship your Critical Section Not Your Data:
Enabling Transparent Delegation with TCLocks

Existing lock design: Either no locality of shared data or require application modification

Traditional lock design: Move data to computation Delegation-style lock design: Move computation to data

Traditional lock design: No locality of shared data Delegation-style lock design: Requires application rewrite

Application
performance

Shared Data
Movement

CS Execution Time

lock()
count++
unlock()

void incr_func() =
count++

send_req_to_server(&incr_func)

4X

TCLocks: Provide minimal shared data movement without application modification

Key ideas Algorithm

Practical considerations Evaluation

TCLocks provides locality for shared data without application modification

● How to capture the thread’s context?
○ Instruction pointer + stack pointer + general-purpose registers

● Where to capture the thread’s context?
○ Start and end of lock/unlock API

● Does the waiter’s thread modify its context?
○ No, lock waiter busy waits to acquire the lock

t
s
: server thread t

i
: thread i CTX

i
: thread i’s context

1 socket > 1 socket

3.8x
2x

● Within a socket:
○ Minimal shared data movement

● Across socket:
○ NUMA-aware policy

User-space: LevelDB

5.2x

1 socket > 1 socket

Kernel-space: FxMark
● Algorithmic support:

○ Delegation-based blocking lock
○ Phase-based reader-writer lock
○ NUMA-aware policy

● Lock usage:
○ Nested locking
○ OOO unlocking
○ Special execution contexts
○ per-CPU variables

● Performance optimization:
○ Reduced context-switch

overhead
○ Stack prefetching

fs/dcache.c
// Update the dcache to reflect the
move of a file name
static void __d_move(struct dentry *dentry,
struct dentry *target, bool exchange) {
 …………….
 spin_lock(&target->d_parent->d_lock);
 spin_lock_nested(&old_parent->d_lock, 1);
 spin_lock_nested(&dentry->d_lock, 2);
 spin_lock_nested(&target->d_lock, 3);

 ……….critical section…………..

 spin_unlock(&target->d_parent->d_lock);
 spin_unlock(&old_parent->d_lock);
 spin_unlock(&target->d_lock);
 spin_unlock(&dentry->d_lock);
}

Phase 1: All threads Phase 2: Server thread

Benchmark: Each thread enumerates files in a directory,
serialized by a directory lock

Benchmark: Key-value store, threads contend on the
pthread lock

FxMark-MRDM benchmark: Each thread enumerates files in a directory, serialized by a directory lock

Existing lock design:

❏ Use traditional
lock/unlock APIs

❏ Require
movement of
shared data

Existing lock design:

❏ Provide locality
for shared data

❏ Require
application
rewrite

Lock transfer

Lock transfer

lock()

count++

unlock()

count++

unlock()

count++

unlock()

Spin

Spin

Shared
data

t
1

t
2

t
3

lock()

lock()

Shared
data

CS
2

Spin

CS
3

CS Request

Response
Spin

CS Request

Response

tS t2 t3
Processes

client’s request

t
i
: thread i

t
s
: server thread

CS: critical section

t
i
: thread i

Queue

CTX
1

CTX
2

t
1

t
2

lock()

(1) Save context

(2) Join queue

lock()

(1) Save context

(2) Join queue

(3) Spin(3) Become server

CTX
1

CTX
2

t
s

t
2

server

(1) Switch to CTX
2

(2) CS
2

Spin

non-CS

(3) Notify t
2

Queue

Server
loop

