

What are Unseen Objects?

Never observed during training

3D Orientation Estimation

Given a previously unseen object, we predict the category label and 3D orientation by using a retrieval-based method.

Global Sim vs. Local Sim

• We prevent the network from learning object-specific features by computing multiscale local similarities between the query image and reference images.

Fusing Local Similarities for Retrieval-based 3D Orientation Estimation of Unseen Objects Chen Zhao, Yinlin Hu, Mathieu Salzmann

Network Architecture

- Given a pair of images, we use a siamese network to extract multi-scale local features.
- We present an adaptive fusion module to convert local feature similarities to a single image similarity score.

Fast Retrieval

- A naïve image retrieval strategy compares query with every reference. Given N objects with R references each, the cost of O(NR) quickly becomes unaffordable as N and R increase.
- We design a fast retrieval strategy, which is around 60 times faster than the naïve one.

Quantitative Results

- LineMOD-Occluded, and T-LESS.
- training data and the other one as testing data.
- For T-LESS, we test the methods using the models pretrained on LineMOD.

		<i>.</i>							
	Rotation Accuracy (%) on LineMOD								
Methods	Split #1		Split #2		Split #3		Mean		
	Seen	Unseen	Seen	Unseen	Seen	Unseen	Seen	Unseen	
HOG	38.89	40.17	28.21	30.74	31.02	28.48	32.71	33.13	
LD	94.50	8.63	89.57	12.47	91.47	5.22	91.85	8.77	
NetVLAD	100.00	36.11	98.66	20.33	99.35	23.38	99.34	26.61	
PFS	100.00	6.31	99.19	6.65	99.46	5.54	99.55	6.17	
MPE	91.94	38.96	66.47	41.46	87.72	61.62	82.04	47.35	
GDR-Net	99.89	4.61	99.28	4.82	99.31	5.02	99.49	4.82	
Ours	97.49	89.55	94.90	79.04	93.67	75.96	95.35	81.52	
Rotation Accuracy (%) on LineMOD-O									
Methods	Split #1		Split #2		Split #3		Mean		
	Seen	Unseen	Seen	Unseen	Seen	Unseen	Seen	Unseen	
HOG	0.60	0.60	0.18	0.18	5.25	5.25	2.01	2.01	
LD	32.21	6.25	26.56	3.26	24.57	4.57	27.78	4.69	
NetVLAD	51.60	24.32	42.20	18.05	36.56	18.84	43.45	20.40	
PFS	71.40	6.25	60.88	13.15	54.67	4.68	62.32	8.73	
MPE	40.47	22.56	27.31	5.20	35.06	18.22	34.28	15.33	
GDR-Net	63.37	3.12	55.31	2.97	49.91	2.39	56.20	2.83	
Ours	64.92	60.75	56.51	52.41	52.47	37.85	57.97	50.34	
	Rotation Accuracy (%) on T-LESS								
Methods	HOG	LD	NetVLAD) PFS	MPE	GDR-N	et	Ours	
Acc. (%)	74.22	24.19	56.46	17.92	66.88	11.89		78.73	

Ablation Studies The accuracy significantly decreases when local similarities are replaced by the global similarity in our framework.

Contact Info

CONFERENCE ON COMPUTER VISION **TEL AVIV 2022** October 23-27, 2022

We conduct experiments on three datasets, LineMOD,

For LineMOD and LineMOD-O, we split images to three groups according to the contained objects. We use two groups as

8.06	89.55	 Greedy Search vs. our Fast Retrieval 							
		Methods	Greedy Search	Fast Retrieval					
		Acc. (%)	95.93	89.55					
		Time (s)	30.74	0.42					
67 13,1	6,323								

E-mail: chen.zhao@epfl.ch; **Homepage:** https://sailor-z.github.io