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DATA-INTENSIVE APPLICATIDNS AND SYSTEMS

Taming Heterogeneity in the Al-Driven Data Landscape

Data-Intensive Applications and Systems Laboratory

Catching up with an Evolving Landscape Classical Analytical Workloads and GPUs
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Next generation systems must adapt!
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Classical workloads are interconnect bound,
and struggle even with GPU optimized compression

Al-Augmented Workloads with LLMs Vector Search & Semantic Similarity

SELECT * FROM my_photo_library WHERE -
Al_FILTER(1 am smiling with my cat’); Semantic Filter

Semantic Join
SELECT * FROM my_course_history AS m, this_semester_course AS ¢ WHERE

Al FILTER(‘{c course} extends the knowledge | learned from {m.course}’);
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Typical LLM Inference Engine
LLM Requests Integrated with Database

Semantically rich data processing should be efficient

1,000,000x slower
than DB operators!

SELECT * FROM my_course_history AS m, this_semester_course AS c WHERE
Al_FILTER(*{c.course} is similar to {m.course}’); .
Semantic Similarity Join

GPU Optimization
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1,000x slower than C)\Vecto, search  Cost-based Query

DB operators! Optimization

High-dimensional vector search: a new bottleneck

New Al-Driven Workloads to Leverage DB? JIT as a Solution to Handle New Operators?

Q: Summarize the reviews of all CS courses in the last year and
suggest courses with good reviews
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extremely challenging
or not useful!
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Find good reasoning paths leveraging SQLs

Fast Al Enhanced Analytics through JIT Code Generation & GPU-Acceleration

Complex Data, Code Generation
and Al Workloads 000
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intra-operator &

Y Operator tuning is p-architecture specific
b Tune operators to memory hierarchy specifics

intra-device
& Portability clashes with specialization
= Inject target-specific info using codegen

~ inter-device
‘ 6 . % Limited device inter-operability
Y Encapsulate heterogeneity and balance load

Traits in Heterogeneous Servers
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Encapsulate transitions in operators

Efficient execution via accelerator-level parallelism

Runtime & Execution on
GPU-accelerated servers
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