Beyond Binary Trees: Finding General Hierarchies

Maximilien Dreveton, Matthias Grossglauser, Daichi Kuroda, Patrick Thiran INDY (Information and Network Dynamics), EPFL

Hierarchical Clustering

Goal: Finding a good tree representation of the given data (\rightarrow similarities) so that tree represents which object is close to which

Most Informative Valid Hierarchy

Most Informative Valid Hierarchy *T*_{*}

 $(\mathcal{H}(\mathcal{X}, s), \subsetneq)$ is a partially ordered set and it has a greatest element T_* .

 $T_* = \arg \max |T|$ $T \in \mathcal{H}(\mathcal{X}, s)$

• |T|: # of vertices of a tree T • $\mathcal{H}(\mathcal{X}, s)$: the set of valid hierarchies

Properties

- 1. $T \subseteq T_*$ for any $T \in \mathcal{H}(\mathcal{X}, s)$ and T_* is uniquely defined for a given (\mathcal{X}, s)
- 2. Flat communities = T_* being a star graph tree
- 3. It coincides with the ultrametric tree when *s* is ultrametric

Similarities *s*

Current Methods and Limitations

Ultrametric Tree & Additive Tree

(1) Find bottom communities by flat community detection methods

Linkage

Tree

• Ultrametric Distance: $d(x_1, x_3) \le \max\{d(x_1, x_2), d(x_2, x_3)\}$

- Additive Distance:
 - $d(x_1, x_2) + d(x_3, x_4)$
 - $\leq \max\{d(x_1, x_3) + d(x_2, x_4), d(x_2, x_3) + d(x_1, x_4)\}$
- Triangular Inequality:
- $d(x_1, x_3) \le d(x_1, x_2) + d(x_2, x_3)$

Popular methods

- Linkage [1]
- Dasguptuta Cost [2]
- Top-Down [3]

Limitations

- Overfit to Binary tree
 - A lot of hallucinated levels
 - Cannot Distinguish with/without hierarchy
- Not well-defined outside ultrametric/additive distance

4. $T_* \subset T_{linkage}$ & T_* can be reconstructed by: (a) Apply linkage to get *T_{linkage}* (b) trimming unqualified verticies of $T_{linkage} \Rightarrow T_*$

Handling Noise

 $T_{\epsilon} \in \mathcal{H}(\mathcal{X}, s, \epsilon)$ satisfies for any $t \in T_{\epsilon}$: $\min_{x_1,x_2 \in t, x_3 \in \mathcal{X} \setminus t} s(x_1, x_2) > s(x_1, x_3) > \emptyset.$

Application: Hierarchical Community Detection

Based on [3], propose the following algorithm:

1. Detect bottom communities \hat{X} by Bethe-Hessian [4] 2. Define $\hat{s}: \hat{\mathcal{X}} \times \hat{\mathcal{X}} \to \mathbb{R}$ as edge densities between $\hat{\mathcal{X}}$ 3. Apply average linkage to obtain $\hat{T}_{linkage}$ 4. Trim $t \in \hat{T}_{\text{linkage}}$ that violates ϵ -strong condition and get \hat{T}

Valid Hierarchies

9 8 10 6

Definition: Valid Hierarchies: $\mathcal{H}(\mathcal{X}, s)$	
$T \in \mathcal{H}(\mathcal{X}, s)$ is a tree s.t., from $\forall x_1 \in \mathcal{X}$	-
• if x_2 is closer* than x_3 on T	
$\rightarrow x_2$ is closer than x_3 also w.r.t. $s(\cdot, \cdot)$	
• if x_2 and x_3 are equally close* on T	
\rightarrow no info on which one is closer w.r.t. $s(\cdot, \cdot)$	
$\not\rightarrow$ But NOT: equally close w.r.t. $s(\cdot, \cdot)$	

X
$\langle \mathcal{X} \rangle$

4 6 6 6 1

1 2 3 4 5 6 7

 $\{x_4\}\ \{x_5\}$ 1 2 3 4 5 6 7 Formally, $T \in \mathcal{H}(\mathcal{X}, s)$ satisfies for any $t \in T$: $\min_{x_1,x_2 \in t, x_3 \in \mathcal{X} \setminus t} s(x_1, x_2) > s(x_1, x_3) > 0.$

There are often multiple trees in $\mathcal{H}(\mathcal{X}, s)$.

Partial Order for Trees

Table 1: Performance of HCD algorithms on 20 ABCD [5] graphs (communities without hierarchies).

	ĥ	$\hat{k} = k$	$ ho(z^*, \hat{z})$	$ ho(T^*, \hat{T})$	$\hat{T} = T^*$
Our Algorithm	10 ± 0	20/20	0.97 ± 0.0038	0.97 ± 0.0038	20/20
Nested sEEP [6]	10 ± 0	20/20	0.97 ± 0.0038	0.95 ± 0.051	16/20

Nested DCBM [7] 10 ± 0.77 18/20 0.99 ± 0.0047 0.97 ± 0.077 18/20

Table 2: Performance of HCD algorithms on HDCBMs with all possible shapes of hierarchies with 9 leaves.

	ĥ	$\hat{k} = k$	$ ho(z^*,\hat{z})$	$ ho(T^*, \hat{T})$	$\hat{T} \simeq T^*$
Our Algorithm	8.4 ± 0.84	62%	0.93 ± 0.10	0.98 ± 0.044	61.6%
Nested sEEP [6]	8.4 ± 0.84	62%	0.93 ± 0.10	0.94 ± 0.0812	36.8 %
Nested DCBM [7]	20 ± 10.3	0.01%	0.81 ± 0.098	0.64 ± 0.154	0.0 %

Current Limitations & Future Work

• $T_1 = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_1, x_2, x_3\}, \{x_1, x_2, x_3, x_4, x_5\}\}$ • $T_2 = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_1, x_2, x_3\}, \{x_4, x_5\}, \{x_1, x_2, x_3, x_4, x_5\}\}$ • $T_3 = \{\{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_1, x_2\}, \{x_3, x_4, x_5\}, \{x_1, x_2, x_3, x_4, x_5\}\}$ $(\mathcal{T}(\mathcal{X}, s), \subsetneq)$ is a partially ordered set. \rightarrow $T_1 \subseteq T_2$ but $T_1 \not\subseteq T_3$ and $T_3 \not\subseteq T_1$

1. Choosing a good ϵ

2. Robust-to-outliers practical extension

3. Apply to general clustering context

4. Starting from node of the graph (work in progress)

References

1. M. Dreveton et al., 2023. arXiv: 2306.00833 [cs.SI]. 2. S. Dasgupta, *STOC '16*, 2016, pp. 118–127 3. T. Li et al., Journal of the American Statistical Association, 117(538):951–968, 2022. 4. L. Dall'Amico et al., J. Mach. Learn. Res., 22:217–1, 2021. 5. B. Kamiński et al., Network Science, vol. 9, no. 2, pp. 153–178, 2021. 6. M. T. Schaub et al., *Physical Review E*, 107(5):054305, 2023. 7. T. P. Peixoto, *Physical Review X*, 4.1, ,2014: 011047.