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Goal: Finding a good tree representation of the given data (→ similarities) so that treerepresents which object is close to which
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Current Methods and LimitationsUltrametric Tree & Additive Tree
Dis-similarities

Distances

Additive Distances

Ulatrametric

•Ultrametric Distance:
d(x1, x3) ≤ max{d(x1, x2), d(x2, x3)}
• Additive Distance:

d(x1, x2) + d(x3, x4)
≤ max{d(x1, x3) + d(x2, x4), d(x2, x3) + d(x1, x4)}

• Triangular Inequality:
d(x1, x3) ≤ d(x1, x2) + d(x2, x3)
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(2) Linkage = 
Connect from 
the closest pair

(1) Find bottom communities by flat community detection methodsLinkage

Popular methods
• Linkage [1]
•Dasguptuta Cost [2]
• Top-Down [3]Limitations
•Overfit to Binary tree- A lot of hallucinated levels- Cannot Distinguish with/without hierarchy
•Not well-defined outside ultrametric/additive dis-tance

Hierarchical Clustering

Definition: Valid Hierarchies: H(X , s)
T ∈ H(X , s) is a tree s.t., from ∀x1 ∈ X
• if x2 is closer∗ than x3 on T
→ x2 is closer than x3 also w.r.t. s(·, ·)
• if x2 and x3 are equally close∗ on T
→ no info on which one is closer w.r.t. s(·, ·)
̸→But NOT: equally close w.r.t. s(·, ·)

Notation
•H(X , s): set of valid hierarchies for Xw.r.t. s(·, ·)
• X : set of base objects
• s(·, ·): similarity measurement for X ×X

1 2 3 4 5 6 7

1
2

3
4

5
6

7

10 9 9 5 6 3 3
9 10 8 5 2 5 2
9 8 10 6 4 2 7
5 5 6 10 9 7 8
6 2 4 9 10 7 8
3 5 2 7 7 10 8
3 2 7 8 8 8 10

→

Making Tree

Daichi Kuroda

May 2024

1

4

8

x1 x2 x3

6

8

x4 x5

x6 x7

{x1, x2, x3, x4, x5, x6, x7}

{x1, x2, x3}

{x1} {x2} {x3}

{x4, x5, x6, x7}

{x4, x5}

{x4} {x5}

{x6} {x7}

1

←

1 2 3 4 5 6 7

1
2
3
4
5
6
7

10 8 8 4 4 4 4
8 10 8 4 4 4 4
8 8 10 4 4 4 4
4 4 4 10 8 6 6
4 4 4 8 10 6 6
4 4 4 6 6 10 6
4 4 4 6 6 6 10

Formally, T ∈ H(X , s) satisfies for any t ∈ T :min
x1,x2∈t,x3∈X\t s(x1, x2) > s(x1, x3) > 0.

There are often multiple trees in H(X , s).

Valid Hierarchies

BEYOND BINARY TREES: FINDING GENERAL HIERARCHIES

it will be made precise in the following definition. We provide several examples in Figure 1, for
illustration purposes.

Definition 1 Given a set X = {x1, · · · , xk}, a tree T belongs to the set T (X ) of trees whose
leaves are {x1}, · · · , {xk} if and only if T satisfies the following three conditions:

1. T ⊋ pow(X ), where pow(X ) is the powerset of X ;

2. {x1}, · · · , {xk}, {x1, · · · , xk} → T ;

3. for any u, v → T such that u ↑= v, we have either u ↓ v = ↔, or u ⊋ v, or v ⊋ u.

Let T → T (X ). The sets t → T contained in T are called vertices. We call {x1, · · · , xk} the
root of T and {x1}, · · · , {xk} the leaves of T . Moreover, the definition ensures that every non-leaf
vertex t of a tree T → T (X ) is the union of at least two subsets that are the children of t. In Figure 1,
we provide three trees T1, T2 and T3 belonging to T ({x1, · · · , x5}).

Defining a tree as a set of sets naturally establishes a relationship ↗ among two trees T, T → →
T (X ), specifically:

T ↗ T → ↘≃ ⇐t → T : t → T →.

This relationship ↗ is reflexive, symmetric, and transitive. Continuing the example of Figure 1, we
have T1 ↗ T2, and we say that T2 contains T1. Because neither T3 ↗ T1 nor T1 ↗ T3 holds, the
relationship ↗ is only a partial order. Finally, we write T ⊋ T → if T → contains T but T → ↑= T .
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Figure 1: Three trees T1, T2 and T3 belonging to T ({x1, x2, x3, x4, x5}). Observe that T1 ⊋ T2

but T1 ↑↗ T3 and T3 ↑↗ T1. Indeed, in terms of Definition 1, these three trees are explicitly
written as (a) T1 = {{x1}, {x2}, {x3}, {x4}, {x5}, {x1, x2, x3}, {x1, x2, x3, x4, x5}},
(b) T2 = {{x1}, {x2}, {x3}, {x4}, {x5}, {x1, x2, x3}, {x4, x5}, {x1, x2, x3, x4, x5}},
and (c) T3 = {{x1}, {x2}, {x3}, {x4}, {x5}, {x1, x2}, {x3, x4, x5}, {x1, x2, x3, x4, x5}}.

2.2. Valid Hierarchies and the Most Informative Hierarchy

Any tree T → T (X ) defines a hierarchy among its leaves {x1}, · · · , {xk}: from the bottom up,
leaves of T merge into branches, and these branches merge further up into larger branches. Consider
a function s : X⇒X ⇑ R+ measuring the similarity between pairs of items belonging to the discrete
set X = {x1, · · · , xk}. We assume only that s(x, y) = s(y, x) (s is symmetric) and s(x, x) >
s(x, y) for all x ↑= y → X (self-similarity is greater than pairwise similarity). The hierarchy defined
by a tree T → T (X ) is valid with respect to the similarity s if the similarity between two distinct

3

• X = {x1, x2, · · · , x5}
• T1 = {{x1}, {x2}, {x3}, {x4}, {x5}, {x1, x2, x3}, {x1, x2, x3, x4, x5}}
• T2 = {{x1}, {x2}, {x3}, {x4}, {x5}, {x1, x2, x3}, {x4, x5}, {x1, x2, x3, x4, x5}}
• T3 = {{x1}, {x2}, {x3}, {x4}, {x5}, {x1, x2}, {x3, x4, x5}, {x1, x2, x3, x4, x5}}(T (X , s),⊊) is a partially ordered set.
→ T1 ⊊ T2 but T1 ̸⊆ T3 and T3 ̸⊆ T1

Partial Order for Trees

Most Informative Valid Hierarchy T∗(H(X , s),⊊) is a partially ordered set and it has a greatest element T∗.
T∗ = arg max

T∈H(X ,s) |T | • |T |: # of vertices of a tree T
•H(X , s): the set of valid hierarchies

Properties1. T ⊆ T∗ for any T ∈ H(X , s) and T∗ is uniquely defined for a given (X , s)2. Flat communities = T∗ being a star graph tree3. It coincides with the ultrametric tree when s is ultrametric4. T∗ ⊂ Tlinkage & T∗ can be reconstructed by:(a) Apply linkage to get Tlinkage(b) trimming unqualified verticies of Tlinkage ⇒ T∗

Most Informative Valid Hierarchy

Tε ∈ H(X , s, ε) satisfies for any t ∈ Tε:min
x1,x2∈t,x3∈X\t s(x1, x2) > s(x1, x3) >

ε
�
�0.
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Similarity ŝ. Noises[−0.2, 0.2] are added.

x1 x2 x3
x4

T∗(X , s).0.4 ≤ ε < 0.7
x1 x2 x3 x4

ε < 0.4

Handling Noise

Based on [3], propose the following algorithm:1. Detect bottom communities X̂ by Bethe-Hessian [4]2. Define ŝ : X̂ × X̂ → R as edge densities between X̂3. Apply average linkage to obtain T̂linkage4. Trim t ∈ T̂linkage that violates ε-strong condition and get T̂

Table 1: Performance of HCD algorithms on 20 ABCD [5] graphs (communities without hierarchies).
k̂ k̂ = k ρ(z∗, ẑ) ρ(T ∗, T̂ ) T̂ = T ∗Our Algorithm 10± 0 20/20 0.97± 0.0038 0.97± 0.0038 20/20Nested sEEP [6] 10± 0 20/20 0.97± 0.0038 0.95± 0.051 16/20Nested DCBM [7] 10± 0.77 18/20 0.99± 0.0047 0.97± 0.077 18/20

Table 2: Performance of HCD algorithms on HDCBMs with all possible shapes of hierarchies with 9 leaves.
k̂ k̂ = k ρ(z∗, ẑ) ρ(T ∗, T̂ ) T̂ ≃ T ∗Our Algorithm 8.4± 0.84 62% 0.93± 0.10 0.98± 0.044 61.6%Nested sEEP [6] 8.4± 0.84 62% 0.93± 0.10 0.94± 0.0812 36.8 %Nested DCBM [7] 20± 10.3 0.01% 0.81± 0.098 0.64± 0.154 0.0 %
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Application: Hierarchical Community Detection

1. Choosing a good ε2. Robust-to-outliers practical extension3. Apply to general clustering context4. Starting from node of the graph (work in progress)

Current Limitations & Future Work
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