
Static Verification

Insight: Separate kernel safety properties,
use distinct mechanisms to enforce them

● Use dedicated, appropriate mechanisms to enforce safety
for each sub-property

● Use static verification to reduce overhead of runtime
mechanisms whenever possible

Enforce kernel
interface compliance

Verify nuanced
semantics

Kernel interface safety Enforce extension
correctness

Co-design runtime checks with verification to reduce
overhead

Broad, diverse
behaviorNarrow, well-defined

Kernel-owned
resources

Extension memory
safety, termination

Extension-owned
resources

● Separate kernel safety into two sub-properties
○ Kernel Interface Compliance
○ Extension Correctness

Problem: Kernel extensions are either fast or flexible – not both

Fast, Flexible, and Practical
Kernel Extensions

Kumar Kartikeya Dwivedi Rishabh Iyer Sanidhya Kashyap

KFlex enables fast, flexible, and practical kernel extensions

Key Ideas Overview

Runtime Checks Current Solutions

Kernel Interface
Compliance

Extension
Correctness Static verification Runtime checks

Permit diverse code

Sacrifice flexibility or
performance

Use specific
programming languages

A difficult programming
model

Allow arbitrary code

Poor performance

Hurt performance

Constrain admitted code

Low overhead

Limit flexibility

KFlex: Balances flexibility and performance

Evaluation

eBPF

Bytecode Verifier JIT

1

2 3 4

4

Write extension code

Compilation Verification Accept

Reject and notify user

KFlex Instrumentation
Engine

KFlex
Runtime

Design

while (head != NULL) {

head = head->next;

}

Heaps + SFI for extension
memory safety

Extension cancellations for
safe termination

while (head != NULL) {

head = head->next;

*terminate;

}

Separate region for extension data

Instrumentation
Instrumentation for SFI

Up to 3x more
throughput

Offload both
SETS/GETS

No memory waste

7% latency overhead,
30% throughput overhead

Implement arbitrary data
structures

76% less instrumentation
due to co-design

