
Static Verification

Insight: Separate kernel safety properties,
use distinct mechanisms to enforce them

● Use dedicated, appropriate mechanisms to enforce safety 
for each sub-property

● Use static verification to reduce overhead of runtime 
mechanisms whenever possible

Enforce kernel 
interface compliance

Verify nuanced 
semantics

Kernel interface safety Enforce extension 
correctness

Co-design runtime checks with verification to reduce 
overhead

Broad, diverse 
behaviorNarrow, well-defined

Kernel-owned 
resources

Extension memory 
safety, termination

Extension-owned 
resources

● Separate kernel safety into two sub-properties
○ Kernel Interface Compliance
○ Extension Correctness

Problem: Kernel extensions are either fast or flexible – not both

Fast, Flexible, and Practical
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KFlex enables fast, flexible, and practical kernel extensions
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Runtime Checks Current Solutions

Kernel Interface 
Compliance

Extension 
Correctness Static verification Runtime checks

Permit diverse code

Sacrifice flexibility or 
performance

Use specific 
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KFlex: Balances flexibility and performance
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Write extension code
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while (head != NULL) {

head = head->next;

}

Heaps + SFI for extension 
memory safety

Extension cancellations for 
safe termination

while (head != NULL) {

head = head->next;

*terminate;

}

Separate region for extension data

Instrumentation
Instrumentation for SFI

Up to 3x more 
throughput

Offload both 
SETS/GETS

No memory waste

7% latency overhead,
30% throughput overhead

Implement arbitrary data 
structures

76% less instrumentation 
due to co-design


