NFOS: Automatic Scaling of Single-
threaded Network Functions

g E !
) . . ‘;" /

Lei Yan Sanidhya Kashyap George Candea

Appropriate abstractions can hide concurrency from
developers while allowing them to convey enough
information for NFOS to scale an NF.

)

OSL ab

o

Yueyang Pan

Diyu Zhou

Developing scalable NFs is hard

Write parallel
NF code

Understand scalability

Remove scalability
bottleneck

—?
bottleneck
Need complex synchronization

techniques for scalability, e.g.,
fine-grained locking.

Existing tools only show contention in code
blocks. Unclear what are the real scalability
issues: False sharing? Inefficient locks?
Limitation of NF semantics?

Need to rewrite parallel code.
May introduce new concurrency
bugs or scalability issues.

NFOS: Develop scalable NFs in a single-threaded manner

fw-nat.c:

/*
pkt->src_ip = endp_pub.ip;
pkt->src_port = endp_pub.port;

Snippet of an NAT written in NFOS

// Allocate public <IP,port> with NFOS
// index allocator interfaces.
if (!nfos_alloc_index(pub_ip_port_pool, &
index)) { drop_pkt(); }
endp_pub = {.ip = to_ip(index),
.port = to_port (index) };

Address translation */

Write single-threaded
NF code

INFOS profiler/recipe below shows bottleneck
is the insufficient number of indexes in index allocator.
For this NAT NF it means not enough public IPs.

Total txs: 94,713,483

Total tx aborts: 905,918

Total tx abort ratio: 1.0%

fw-nat.c:L42 if (!nfos_alloc_index(
pub_ip_port_pool,

tx aborts: 890,919 98.3%

Recipe: Overprovision indexes.

Throughput (mpps)
= N 8 B

Increasing the number of public IPs from 53
to 55 makes the NAT scalable.

Throughput (max. 0.1% packet loss)

—e— 53 public IPs
~4— 55 public IPs

u
o

—— 57 public IPs

(=]

o o

o

8 12 16

#(worker) cores

20 23

Find & Understand
scalability bottleneck

at the level of NF logic

Remove scalability
bottleneck by changing
the single-threaded code.

NFOS
abstractions

NFOS
runtime

4

I —

Programming model:

through NFOS state interfaces.

- Specify “packet set” and NF state local to it.
- Access “global state” shared by packet sets

Transaction-abort proxy

metric for scalability
& Profiler for it

Scalability-enhancing
recipes

| . . .
1 exploit fine-grained parallelism on

I global state access.

NFOS-based NFs (NAT, bridge, load

L i A 1

:-Scale the NF leveraging the prog. model:
1- Process a packet set on a single core to
I avoid synchronization on its local state;
I~ Process a packet in a transaction to

The number of transaction aborts
serves as an abstract proxy metric

each line of single-threaded NF

for determining the extent to which

NF scalability depends on access |
to global state which are done via:
NFOS interfaces. Recipes show |
how to reduce the scalability !

code hurts scalability due to conflict impact of an interface operation, !

and hence improve NF scalability.

¢ ¢ Guided by NFOS profiler/recipes, developers

balancer, and firewall) achieve competitive /" can productively improve NF throughput by

perf. as hand-parallelized Cisco VPP NFs.

up to 91x through semantic relaxations.



