
// Excerpt from the TPot spec for //
// pKVM’s memory allocator. //

// -- helpers -- //
// ...
bool list_head_well_formed(struct list_head *h,
 int64_t i) {
 if (h->next == h) {
 // The list is empty. prev must be h.
 return h->prev == h;
 };

 // Next is a list node with the correct order,
 // and its prev is h.
 return list_node_well_formed(h->next) &&
 get_order(h->next) == i &&
 h->next->prev == h;
}

// -- invariants -- //
bool inv__pool_alloc() {
 names_obj(pool, struct mem_pool);
}
bool inv__free_area() {
 return forall_elem(pool->free_lists,
 &list_head_well_formed);
}

Automated Verification of
Systems Code

Formal verification of low-level systems code can be largely
automated through domain-specific logic encodings

Problem: verifying systems code requires too many code annotations

 TPot: an automated verifier for low-level C programs

George CandeaCan Cebeci

DSLab

Cause: Low-level
programming idioms

- Pointer arithmetic
- Type casting
- Physical addresses
- Bit twiddling
- Dynamic allocation

Automation over
modularity

- Specifications at the system
level, not the function level

- Rely more heavily on the
solver instead of manually
managing proof state

phys_addr_t addr = page_to_phys(p);

/*@ apply find_buddy_
cn_hyp_page_to_pfn(__hyp_vmemmap,p),
order); @*/

addr ^= (PAGE_SIZE << order);

Cause: Strict boundaries for
proof modularity

- Function contracts
- Framing conditions
- Predicate packing/unpacking

State of the art
in verifying systems

Yonghao Zou Diyu Zhou Clément
Pit-Claudel

Verification as a CI process

- Separation between verification and
debugging

- Larger time budget allows for more
room for automation

- Property-based testing for free
through executable specs

Untyped & lazy memory model

- Representing objects as arrays of
bytes automates type casting

- Pointers as numerical values
automate pointer arithmetic

- Lazily instantiating objects
automates dynamic allocation

Challenge: Avoiding solver explosion

Long-running solver queries: ✓
Non-terminating solver queries: ✗

Need to avoid instability in order to push more work to the
solver without causing non-termination.

Biggest culprits: interactions between ∀ quantifiers,
comparisons involving bit vectors

Key technique: Co-design of a spec language and
the underlying logic encoding

Specifications:
- Limited quantification: over array elements, not generic
- Memory ownership through a naming abstraction

Encoding:
- Most quantifiers are handled by the verifier, not the solver
- Conversion between logical bit vectors and integers and lazy

instantiation of axioms for this conversion

System Verifier Annotation
to code ratio

seL4
Kernel Isabelle/HOL 20 lines

per LOC

pKVM memory
allocator CN 7.6 lines

per LOC

IronClad
apps Dafny 4.8 lines

per LOC

Key technique: Co-design of a spec language and
the underlying logic encoding

struct hyp_page *node_to_page(struct list_head *node)
/*@ accesses __hyp_vmemmap; hyp_physvirt_offset @*/
/*@ requires let phys=((integer)node)
+hyp_physvirt_offset@*/
/*@ requires phys < power(2, 64) @*/
 . . .
/*@ ensures return == page @*/
/*@ ensures {__hyp_vmemmap} unchanged;
{hyp_physvirt_offset} unchanged @*/
{ return hyp_virt_to_page(node); }

