4d) DsSLab

Automated Verification of
. Systems and
SYStemS COde Formalisms Lab

Clément

Can Cebeci Yonghao Zou Diyu Zhou George Candea pit-Claudel

Formal verification of low-level systems code can be largely
automated through domain-specific logic encodings

Problem: verifying systems code requires too many code annotations

State of the art Cause: Low-level Cause: Strict boundaries for
in verifying systems programming idioms proof modularity
. - Pointer arithmetic - Function contracts
s Annotation : : s
System Verifier . = ode ratio - Type casting - Framing conditions
- Physical addresses - Predicate packing/unpacking
selL4 20 lines - Ri ' '
Kernel Isabelle/HOL per LOC Bt tWId_dlmg _ struct hyp_page *node_to_page(struct list_head xnode)
- Dynamlc allocation /*@ accesses ___hyp_vmemmap; hyp_physvirt offset @/
| /*@ requires let phys=((integer)node)
pKVM memory 7.6 lines +hyp_physvirt_offset@x/
allocator CN per LOC phys_addr_t addr = page_to_phys(p); /*@ requires phys < power(2, 64) @t/
. /*@ apply Tind_buddy_ /*@.easares return == page @/
IronClad Dafn 4.8 lines cn_hyp_page_to_pfn(__hyp_vmemmap,p), /*@ ensures {__hyp_vmemmap} unchanged;
apps y per LOC order); @/ {hyp_physvirt_offset} unchanged @/
addr = (PAGE_SIZE << order); { return hyp_virt_to_page(node); }

0¥ TPot: an automated verifier for low-level C programs

Automation over Verification as a CI process Untyped & lazy memory model

modularity - Separation between verification and - Representing objects as arrays of

- Specifications at the system debugging bytes automates type casting

level, not the function level - Larger time budget allows for more - Pointers as numerical values
- Rely more heavily on the room for automation automate pointer arithmetic

solver instead of manually - Property-based testing for free - Lazily instantiating objects
managing proof state through executable specs automates dynamic allocation

Challenge: Avoiding solver explosion // Excerpt from the TPot spec for //
_ _ // pKVM’'s memory allocator. //
Long-running solver queries: v
Non-terminating solver queries: X Z —— helpers — //
Need to avoid instability in order to push more work to the bool liSt—head—Weu—formEd(Siﬁ't’gzttlﬁtzhead *n,
solver without causing non-termination. if (h=>next == h) { -
_ _ _ _ o // The list 1s empty. prev must be h.
Biggest culprits:! interactions between v quantifiers, return h->prev == h:
comparisons involving bit vectors 5
// Next 1s a list node with the correct order,
- . _ : // and its prev 1is h.
Key technlque. Co de_SIQn Of_a >PeC I_anguage clale return list_node_well_formed(h—>next) &&
the UnderIY|ng |OgIC enCOC“ng get_Qrder(h—>next) == 1 &&
h—>next->prev == h;

}

Specifications:
- Limited quantification: over array elements, not generic // — 1nvariants — //

bool inv__pool_alloc() {

- Memory ownership through a naming abstraction names_obi (pool, struct mem_pool);

o }
Encoding: o - bool inv__ free area() {

- Most quantifiers are handled by the verifier, not the solver return forall_elem(pool->free_lists,
- Conversion between logical bit vectors and integers and lazy } &list_head_well_formed);

instantiation of axioms for this conversion

