Rebooting Virtual Memory with Midgard Hzé

Siddharth Gupta, Atri Bhattacharyya, Yunho Oh?, Abhishek Bhattacharjee?, Babak Falsafi, Mathias Payer

EcoCloud, EPFL

*Sungkyunkwan University T Yale University

Virtual Memory Performance Pitfall Data Contiguity Can Help

Increasing memory capacity puts pressure on TLBs

» Servers feature TB-scale memory hierarchies [AWS, GCloud]

» TLBs provide only MB-scale coverage with thousands of entries/core
» Frequent, long-latency page table walks are a performance bottleneck

Core

Core

TLB [~10 entries P

TLB |~1000 entries

)

Platforms today

Platforms in 80s

Product Cores Cache capacity TLB entries Coverage (4KB)
Intel P4 2000 1 256KB SRAM 64 256KB
Intel KabyLake 2016 4 128 MB eDRAM 1536 6MB
Apple M1 2020 8 (4+4) 16MB SRAM 3096 48MB (16KB)
AMD Zen3 2021 64 (8x8) 256 MB SRAM 2048 8MB
Intel Sapphire Rapids | 2022 56 (14x4) 64GB HBM2 ? ?

TLBs cannot scale with memory capacity in the post-Moore era

Virtual Memory Areas (VMAS)

But huge pages are not a panacea

» Huge pages increase TLB entry coverage and require physical contiguity
» But cause memory fragmentation by introducing multiple page sizes

Process O’s Virtual Address Space VMA

System-wide Physical Address Space

Process 1’s Virtual Address Space

(a) Traditional 4KB pages

I = Protection info

(b) Huge pages

(c) Direct segments [ISCA’13] / RMM [ISCA’15] / Translation Ranger [ISCA’19]

POSIX VMAs are the inherent source of data contiguity

VMAs represent data sections present in address spaces
»> Apps organize their address space into YVMAs (e.g. heap, stack, code)
» Each VMA is divided and mapped to physical pages

Process 0’s Virtual Address Space VMA

System-wide Midgard Address Space

System-wide Physical Address Space

Process 1’s Virtual Address Space

n = Protection info
MMA

“/{/

Access control should be performed using the default VMAs
» Permissions are inherently defined at VMA granularity
» Need an intermediate address space to resolve synonyms!

Midgard address space contains a unique mapping of each VMA

Midgard: The Fundamental Divide

Midgard as an intermediate address space
» Logical and global address space managed by the OS
» Deduplicated VMAs are mapped to Midgard and then to pages

(a) Traditional.

(b) Virtual Hierarchies. (c) Midgard.

Placement of address spaces in the memory hierarchy
» Perform access control and cache hierarchy lookups at VMA granularity
» Perform memory management using page granularity

Midgard decouples application-based and OS-based characteristics

Frontside translation (VA—MA)
» Only 10s of VMASs per thread as working set
» Small and fast VLB per core with easy refills from a small VMA table

Methodology:
» AMAT analysis with trace-based simulation using QFlex

» |6 cores with |K baseline TLB entries running graph workloads
--Midgard -e-Traditional (4K) -=-Traditional (2M)

gBS __o—o—9 s °
S 30
5
£25 5
0 o™ ©
S 20 5 5 5
S 15 3 a 2
E 10 Nz
I‘_” > / — ° o °
S o
[J [] -c
Backside translation (MA—PA) 2 16MB 64MB 256MB 1GB 4GB 16GB

» Optimized page table walks using in-cache address translation Cache Hierarchy Capacity

» Optional MLBs co-located with memory controllers for spatial locality
» Stock cache coherence protocol controls PTE copies (w/o MLBs)

» Baseline overhead increases with cache hierarchy capacity
» Midgard enables the overhead to scale with the cache hierarchy capacity

Delaying slow translations provides flexibility and performance Midgard future proofs VM by introducing VMAs in hardware

Yale =P

St |l

SUNG KYUN KWAN UNIVERSITY

N2
EcoClouc

1398

