
Rebooting Virtual Memory with Midgard
Siddharth Gupta, Atri Bhattacharyya, Yunho Oh‡, Abhishek Bhattacharjee†, Babak Falsafi, Mathias Payer

EcoCloud, EPFL ‡Sungkyunkwan University † Yale University

Virtual Memory Performance Pitfall

Increasing memory capacity puts pressure on TLBs

➢ Servers feature TB-scale memory hierarchies [AWS, GCloud]

➢ TLBs provide only MB-scale coverage with thousands of entries/core

➢ Frequent, long-latency page table walks are a performance bottleneck

TLBs cannot scale with memory capacity in the post-Moore era

Data Contiguity Can Help

POSIX VMAs are the inherent source of data contiguity

But huge pages are not a panacea

➢ Huge pages increase TLB entry coverage and require physical contiguity

➢ But cause memory fragmentation by introducing multiple page sizes

Virtual Memory Areas (VMAs)

Midgard address space contains a unique mapping of each VMA

VMAs represent data sections present in address spaces

➢ Apps organize their address space into VMAs (e.g. heap, stack, code)

➢ Each VMA is divided and mapped to physical pages

Access control should be performed using the default VMAs

➢ Permissions are inherently defined at VMA granularity

➢ Need an intermediate address space to resolve synonyms!

Midgard as an intermediate address space

➢ Logical and global address space managed by the OS

➢ Deduplicated VMAs are mapped to Midgard and then to pages

Placement of address spaces in the memory hierarchy

➢ Perform access control and cache hierarchy lookups at VMA granularity

➢ Perform memory management using page granularity

Midgard: The Fundamental Divide

Midgard decouples application-based and OS-based characteristics

Core

L1

LLC

Core

L1

Memory

Core

L1

LLC

Core

L1

Memory

Core

L1

LLC

Core

L1

Memory

Virtual

Physical

Midgard

(a) Traditional. (b) Virtual Hierarchies. (c) Midgard.

Frontside translation (VA→MA)

➢ Only 10s of VMAs per thread as working set

➢ Small and fast VLB per core with easy refills from a small VMA table

Backside translation (MA→PA)

➢ Optimized page table walks using in-cache address translation

➢ Optional MLBs co-located with memory controllers for spatial locality

➢ Stock cache coherence protocol controls PTE copies (w/o MLBs)

System Design

Delaying slow translations provides flexibility and performance

Core

VLB

LLC

L1

Tile

Tile

MLB

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

M
em

o
ry

M
em

o
ry

MC

MLBMC

MLB

MLB

MC

MC

M
em

o
ry

M
em

o
ry

Evaluation

Methodology:

➢ AMAT analysis with trace-based simulation using QFlex

➢ 16 cores with 1K baseline TLB entries running graph workloads

➢ Baseline overhead increases with cache hierarchy capacity

➢ Midgard enables the overhead to scale with the cache hierarchy capacity

Midgard future proofs VM by introducing VMAs in hardware

0

5

10

15

20

25

30

35

16GB4GB1GB256MB64MB16MBA
d

d
re

ss
 T

ra
n

sl
at

io
n

 O
ve

rh
ea

d
 (

%
)

Cache Hierarchy Capacity

Midgard Traditional (4K) Traditional (2M)

Kn
ig

h
ts

 L
an

d
in

g

Ka
b

yL
ak

e

A
M

D
 Z

en
3

Process 0’s Virtual Address Space

System-wide Midgard Address Space

Heap0 Stack1Shared CodeHeap1 Stack0

Process 1’s Virtual Address Space

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

VMA

System-wide Physical Address Space

= Protection infoP

MMA

Product Year Cores Cache capacity TLB entries Coverage (4KB)

Intel P4 2000 1 256KB SRAM 64 256KB

Intel KabyLake 2016 4 128MB eDRAM 1536 6MB

Apple M1 2020 8 (4+4) 16MB SRAM 3096 48MB (16KB)

AMD Zen3 2021 64 (8x8) 256MB SRAM 2048 8MB

Intel Sapphire Rapids 2022 56 (14x4) 64GB HBM2 ? ?

Memory

LLC

L1

TLB

Platforms today

Core

P

Memory

L1

TLB

Platforms in 80s

Core

P ~10 entries ~1000 entries

~KBs

~MBs

~GBs

~TBs

Process 0’s Virtual Address Space

System-wide Physical Address Space

Process 1’s Virtual Address Space

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

P = Protection info P P P P P P

P P

(a) Traditional 4KB pages

(b) Huge pages

(c) Direct segments [ISCA’13] / RMM [ISCA’15] / Translation Ranger [ISCA’19]

Heap1

P

VMA

