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Virtual Memory Performance Pitfall

Increasing memory capacity puts pressure on TLBs

➢ Servers feature TB-scale memory hierarchies [AWS, GCloud]

➢ TLBs provide only MB-scale coverage with thousands of entries/core

➢ Frequent, long-latency page table walks are a performance bottleneck

TLBs cannot scale with memory capacity in the post-Moore era

Data Contiguity Can Help

POSIX VMAs are the inherent source of data contiguity

But huge pages are not a panacea

➢ Huge pages increase TLB entry coverage and require physical contiguity

➢ But cause memory fragmentation by introducing multiple page sizes

Virtual Memory Areas (VMAs)

Midgard address space contains a unique mapping of each VMA

VMAs represent data sections present in address spaces

➢ Apps organize their address space into VMAs (e.g. heap, stack, code)

➢ Each VMA is divided and mapped to physical pages

Access control should be performed using the default VMAs

➢ Permissions are inherently defined at VMA granularity

➢ Need an intermediate address space to resolve synonyms!

Midgard as an intermediate address space

➢ Logical and global address space managed by the OS

➢ Deduplicated VMAs are mapped to Midgard and then to pages

Placement of address spaces in the memory hierarchy

➢ Perform access control and cache hierarchy lookups at VMA granularity

➢ Perform memory management using page granularity

Midgard: The Fundamental Divide

Midgard decouples application-based and OS-based characteristics
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Frontside translation (VA→MA)

➢ Only 10s of VMAs per thread as working set

➢ Small and fast VLB per core with easy refills from a small VMA table

Backside translation (MA→PA)

➢ Optimized page table walks using in-cache address translation 

➢ Optional MLBs co-located with memory controllers for spatial locality

➢ Stock cache coherence protocol controls PTE copies (w/o MLBs)

System Design

Delaying slow translations provides flexibility and performance
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Evaluation

Methodology:

➢ AMAT analysis with trace-based simulation using QFlex

➢ 16 cores with 1K baseline TLB entries running graph workloads

➢ Baseline overhead increases with cache hierarchy capacity

➢ Midgard enables the overhead to scale with the cache hierarchy capacity

Midgard future proofs VM by introducing VMAs in hardware
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Process 0’s Virtual Address Space

System-wide Midgard Address Space

Heap0 Stack1Shared CodeHeap1 Stack0

Process 1’s Virtual Address Space

Heap0 Stack0Shared Code Heap1 Stack1Shared Code

VMA

System-wide Physical Address Space

= Protection infoP

MMA

Product Year Cores Cache capacity TLB entries Coverage (4KB)

Intel P4 2000 1 256KB SRAM 64 256KB

Intel KabyLake 2016 4 128MB eDRAM 1536 6MB

Apple M1 2020 8 (4+4) 16MB SRAM 3096 48MB (16KB)

AMD Zen3 2021 64 (8x8) 256MB SRAM 2048 8MB

Intel Sapphire Rapids 2022 56 (14x4) 64GB HBM2 ? ?
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(a) Traditional 4KB pages

(b) Huge pages

(c) Direct segments [ISCA’13] / RMM [ISCA’15] / Translation Ranger [ISCA’19]
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