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Graph diffusion models - DiGress [1] Large graph generation - SparseDiff [2]
1. Efficient noise model 2. Sparse denoising network
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- Sparse denoising network trained on a random subset of

Discrete diffusion for graphs - DiGress node pairs

- Attributed graph with a and b node/edge classes:
G — (X c R F ¢ RanX(b+1)) ’“,\ ;

- Add graph noise: ¢(G*|G*™) = (X' 1Q%,E" QL)
- Equivariant model: equivariant architecture + invariant loss
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- Add extra features to overcome GNN expressive limit

Constrained graph generation - ConStruct 3!

- Promote sparsity with marginal noise model

ConStruct preserves the forward and reverse process in the
constrained domain:
- Forward - not learnable, so designed to preserve edge-
deletion invariant properties
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- Reverse - edge insertion process due to forward, but

Denoising chain with uniform (top) /marginal (bottom) noise

Denoising process requires projector to refuse constraint violating edges
- Sample the number of nodes train distribution Pl )
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- Iterate over T diffusion steps to predict a clean graph N .
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