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KINESIS: Motion imitation learning for
physiologically plausible motor control

KINESIS is a model-free motion imitation framework to advance the understanding of
muscle-based motor control. Using a musculoskeletal model of the lower body with 80
muscle actuators, we demonstrate that KINESIS achieves strong imitation performance, is
controllable by natural language, and can be fine-tuned to carry out high-level tasks.
KINESIS generates muscle activity patterns that correlate well with human EMG activity.
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KINESIS generates muscle activity patterns that correlate well with human EMG
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Modeling Proprioception with neural

EMG (a.u.)

network models

We trained neural network models to solve proprioceptive computational tasks and we
use the learned representation to predict neural activity to gain insights about how the
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brain perceives our body pose and movements.
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Musculoskeletal model & movement simulation
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— Evaluation: compare representations

Use as test input

— Hypothesis-driven framework to model proprioception

Embed proprioceptive hypotheses

Neural network models

Computational tasks

minimize loss of either:

Generate representations

Body state estimation
Sensorimotor control
Efficient coding

Action recognition

Model single-neuron activity

Neural recordings

learned representations — fit linear mapping
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Large-scale task comparison provides testable predictions
Brain-like compared to untrained
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Marin Vargas* A., Bisi* A., Chiappa, A. S., Versteeqg, C., Miller, L. E., & Mathis, A. “Task-driven neural network models
predict neural dynamics of proprioception”. Cell, 2024.
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RESEARCH QUESTIONS

What are the principles of proprioception?

What are the neural mechanisms
underlying robust motor control?

How does the brain integrate sensory
Inputs to execute movements?

How does expert behavior emerge?

Latent exploration for
reinforcement learning (Lattice)

Lattice is an exploration method which helps learning complex skills in complex
environments through reinforcement learning. It uses the correlation across actuators
learnt by the policy to give a structure to the exploration noise.
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This is achieved by perturbing the latent state of the policy network.

A LATTICE - LATent TIme-Correlated Exploration

( Latent noise Perturbation matrices )
x Na| Pa | (Pa)ij ~N(0,(Sa)is)
W N
Ne| Pe | (Px)ij ~N(0,(Sx)ij)
S a
Ny
Ny Latent size
Ny Action size
\_ SX, Sa Learned perturbation stdj

Chiappa, A., Marin Vargas, A., Huang, A. Z., and Mathis, A. “Latent exploration for

reinforcement learning”. NeurlPS, 2023.

We used LATTICE to win the 2023 MyoChallenge.
Check out our solution!
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We develop normative theories of neural systems that are
trained to perform sensorimotor behaviors as well as task-driven
models.

Muscle spindles convey information about the
body position and movement to the central

nervous system.

By leveraging the power of PINNs we propose a

model of muscle spindles that

fidelity with computational efficiency.

Skill learning and modeling sensorimotor circuits

Join us and Mackenzie
Mathis' lab in Geneval
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A model that integrates principles of biomechanics and neural dynamics
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Modeling muscle spindles with Physics-
Informed Neural Networks (PINNSs)
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Acquiring musculoskeletal
skills with curriculum-based
reinforcement learning

A. Perez Rotondo, M. Dimitriou, A., Mathis, A. “Modeling Sensorimotor Processing with
Physics-Informed Neural Networks.” (In preparation)

Combining reinforcement and curriculum learning, we managed to win the NeurlPS
MyoChallenge both in 2022 and 2023. Curriculum learning, similarly to coaching

techniques used to train athletes, introduces progressively more complex task which
facilitate the acquisition of sophisticated sKills.

A The musculoskeletal hand
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Schematic of the SDS curriculum

Performance

Curriculum | Phase1 | Phase 2
None 41% 0%
Location only | 42% 4%
Speed only 45% 0%
SDS (ours) 100% 55%
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Chiappa* A., Tano* P., Patel* N, Pouget, A., Mathis, A. "Acquiring musculoskeletal skills with curriculum-based

reinforcement learning”. BiorXiv, 2023.
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