Dissociating curiosity-driven exploration algorithms

Interest of curiosity in RL Intrinsic motivations

After each transition (s,a,s’), the agent receives
Tackling Exploration-Exploitation an intrinsic reward as:
dilemma.

. Visit all the states in the least
Novelty: N® (8, a, S’) = — logp%) (8') Frequency of s’ number of steps.

Sparse reward problems. . S®(s,a,s') = —log ﬁfl(s') . Have a good model of the

environment after n steps.
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Updated estimation
Empowerment: E(t)(s,a, s') = Empowerment(t)(s')
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Emulating human behavior. (t) !
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Information gain: I®(s,a,s') = KL(P

. Visit every state as frequently.

Adaptive and autonomous agents.

Mutual information

Environment generation

In order to test the agents in diverse scenarios, we design an environment generation process in 3 steps.

Step 1 Step 2 Step 3
Generate a basic structure. Add additional edges, creating sinks and Assign stochastic or deterministic to
sources. each state.
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Examples of generated environments, varying parameters.
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Size of node: number of outgoing edges.

Results

= Some environment regimes can greatly affect the behavior of the = Novelty is better for spending a uniform amount of time across
agents (stochasticity, source/sink). the states.

= Novelty, and information gain are about as good to reach = Novelty builds an inaccurate model of the environment when
all states fast. states have numerous actions (sources).

= Information gain is better to learn a good model of the environment. = Empowerment is bad for exploring an environment as it tends to

stay in empowering regions of the environment.
learns fast but stays in stochastic regions afterwards.




