
Dissociating curiosity-driven exploration algorithms

▪ Tackling Exploration-Exploitation 
dilemma.

▪ Sparse reward problems.

▪ Emulating human behavior.

▪ Adaptive and autonomous agents.

Intrinsic motivations

Novelty: Frequency of s’

Estimated 
probability of 
transition

Surprise: 

Information gain: 
Updated estimation

Empowerment: 

Mutual information

1. Visit all the states in the least 
number of steps.

2. Have a good model of the 
environment after n steps.

3. Visit every state as frequently.

Environment generation
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Step 1
Generate a basic structure.

Step 2
Add additional edges, creating sinks and 

sources.

Step 3
Assign stochastic or deterministic to 

each state.

Examples of generated environments, varying parameters.
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Interest of curiosity in RL Goals of exploration

Results

▪ Some environment regimes can greatly affect the behavior of the 
agents (stochasticity, source/sink).

▪ Novelty, surprise and information gain are about as good to reach 
all states fast.

▪ Information gain is better to learn a good model of the environment.

▪ Surprise learns fast but stays in stochastic regions afterwards.

▪ Novelty is better for spending a uniform amount of time across 
the states.

▪ Novelty builds an inaccurate model of the environment when 
states have numerous actions (sources).

▪ Empowerment is bad for exploring an environment as it tends to 
stay in empowering regions of the environment.

Parameters Parameters

…

…

…

Parameters

…

…

…

Size of node: number of outgoing edges.

After each transition (s,a,s’), the agent receives 
an intrinsic reward as:

In order to test the agents in diverse scenarios, we design an environment generation process in 3 steps.
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