
Third-parties

Memory-Usage Interfaces for 

Systems Code

Want to work on something related? Talk to us!

There is no formal syntax for expressing memory usage

- Developers must implement and check memory usage carefully

- Third-party vendors cannot write clear memory usage instructions

- Operators need to deploy systems in different environments for testing

George CandeaYonghao Zou

DSLab

void *malloc(size);

void free(void *ptr);

int large_mem_func(n) {
size = sizeof(..) * n;
b = malloc(size, ..); ...
}

int many_alloc_func(int x) {
malloc_object_a();
malloc_object_b();
release_a(); ... }

[alloc size]
void *malloc(size);

[free resource_of(ptr)]
void free(void *ptr);

[alloc sizeof(..) * n]
int large_mem_func(n);

[alloc_and_free a b]
int many_alloc_func(int x);

Extended C front-

end compiler

With the memory usage interface

- Developers have a clear picture of memory usage for their code

- Third-party vendors can write clear memory usage instructions

- Operators can test and verify the systems before deployment

CodeCodeCode

Third-partiesThird-party

•How much memory does
third-party code consume?
•Does my code work properly with them?
•Can they run in multiple environments?

OS,
VM,
IoT,
...

Functional interface Memory-usage interface

There are interfaces describing how to call the function properly, like the declaration 

with the function’s parameters. Can we have memory-usage interfaces?

Code with
memory-usage 

keywords

Code with
memory-usage 

keywords

Code with
memory-usage 

interfaces

LLVM byte-code

Automatic 

test/verify tools


	幻灯片 1

