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Motivation

Mixture-Of-Experts (MoEs)

• Extremely large models with sparse per-token activation
(DeepSeek V2.5 [1]: only 21B of 236B parameters active)

• Independent expert selection for each token

• Too large to fit on a single GPU

Require optimization of expert
placement across GPUs

Expert parallelism

• Widely adopted in practice

• Each GPU holds a subset of experts

• GPU workload scales with the popularity of held experts

• Severe imbalance can lead to token dropping

Expert selection imbalance
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Our solution
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Sharding expert matrices instead of assigning whole experts to
individual GPUs

Setup
• Each expert consists of two fully connected layers (matrices Wi and Wo)

• Single computational node interconnected via high-speed, high-throughput links

• All GPUs have equal capacity, and the collective memory fits the entire model

Detailed algorithm
• Each GPU stores an equal share of Wi columns and Wo rows for each expert

• All non-expert layers (including routers) are fully replicated on each GPU

• Expert computation with sharding:

– Inputs are replicated across all GPUs
– On each GPU, the local slice of expert matrices multiplies the replicated inputs
– Partial outputs are aggregated via an all-reduce operation across GPUs

• Optimized multiplications within GPU via Block Sparse Matrix Multiplication
(MegaBlocks [2])

• Achieves perfect load balancing without token dropping

Existing solutions

• DEEPSPEED - expert parallelism; optimized kernels

• TUTEL - expert parallelism; dynamic parallelism

• LAZARUS - expert parallelism; replication of frequently used experts

• PROPHET - expert parallelism; uses load balancing placement model

• LINA - expert parallelism; expert profiling and selection predicting

• EXFLOW - expert parallelism; expert assignment based on inter-layer affinity

Evaluation

Experimental Setting

• Model: SwitchTransformer-Base [3] (8 to 256 experts)

• Dataset: BookCorpus

• Metric: Time to First Token (TTFT) – duration of Prefill stage

• Baseline: DeepSpeed [4] using expert parallelism with capacity factor min(|E|, 50)
• Batch Size: 250 when varying the number of experts

• Experts: 128 when varying batch size

• A custom router is employed to induce skew in expert selection

Comparison Against Baseline
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• MOESHARD consistently outperforms the baseline until DeepSpeed begins dropping
tokens (for more than 50 experts)

• Performance benefits of MOESHARD even more pronounced with larger batch sizes

Ablation Study
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• For small matrices, the overhead of launching MegaBlocks outweighs its benefits

• MegaBlocks becomes advantageous when the number of experts exceeds 64
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